ISOE2019

International School of Oxide Electronics

June 25 - July 5, 2019
Cargèse

CRYSTAL SYMMETRY

Béatrice GRENIER

Univ. Grenoble Alpes \& CEA-IRIG-MEM
Grenoble, France

Crystallography \rightarrow Link between structure and physical properties

1- Translation symmetry
Periodicity of the physical properties: Solid state physics

- Phonons, magnons, ...
- Diffraction

2- Point (group) symmetry
Anisotropy of the physical properties: macroscopic physics
\rightarrow reflects the point symmetry of crystals

- External shape of crystals (natural faces)
- Optical, mechanical, magnetic, properties; Electric conductivity,

Curie's principle: The symmetry of a cause is always preserved in its effects

Existence or not of some phenomena, symmetries of the possible ones
Ex.: existence or not of ferroelectricity, relations between the various components of the stress tensor, ...

Outline

1. Point group symmetry
 Elementary point symmetry operations
 Crystallographic point groups: definition, international notation
 Examples of point groups
 The 32 crystallographic point groups and 11 Laue classes

2. Translation symmetry

Lattice and motif, Unit cell
The orientation symmetries of lattices: the 6 conventional cells, 7 crystal systems and 14 Bravais lattices Lattice directions and net planes

3. Space group symmetry

Glide planes and screw axes
The 230 space groups
The International Tables for Crystallography

1. Point Group Symmetry: Elementary point symmetries

Point symmetries exist at the macroscopic \& atomic scales. They keep at least one point fixed: the origin

Inversion (through a point) Rotation (around an axis)
\rightarrow centrosymmetric crystal
Rotation of order n

Rotoinversion
\rightarrow combination of n and $\overline{1}$
$\overline{1}, \overline{2}, \overline{3}, \ldots$

Reflection
(through a mirror plane) m

The point symmetry operations form a group

A group (G, \times) of order n is a set of n elements $g_{1}, g_{2}, \ldots, g_{n}$ equipped with an operation (group multiplication \times) that combines any two elements to form a third element and that satisfies four conditions called the group axioms, namely:

Closure: $\quad g_{i} \times g_{j} \in G$
Identity: $\quad \exists!e$ such that $g_{i} \times e=e \times g_{i}=g_{i} \quad \rightarrow 1$ (does nothing)

Invertibility: each element g_{i} has a unique inverse g_{i}^{-1} such that: $g_{i} \times g_{i}^{-1}=g_{i}^{-1} \times g_{i}=e$
inverse of $n:-n$ (rotate in the other way) Inverse of m : m

Associativity: $\quad\left(g_{i} \times g_{j}\right) \times g_{k}=g_{i} \times\left(g_{j} \times g_{k}\right)$

For point symmetry operations:

$\times \leftrightarrow$ apply successively 2 symmetry operations

1. Point Group Symmetry: How to obtain and name all point groups?

How to obtain all crystallographic point groups (= crystal classes) ?
Combine the 10 elementary symmetry operations, with the following constraints:

- all symmetry elements go through a common point,
- compatibility with the translation symmetry
\Rightarrow constraints between the orientations of the various symmetry axes / planes
Notation of the point groups - International (Hermann-Mauguin) symbol
Symmetry operations along 1, 2 or 3 directions (primary, secondary, tertiary), ordered with decreasing or equal degree of symmetry (except for 2 cubic point groups)

Examples:
N.B.: the direction of a mirror is given by its normal

$$
\begin{aligned}
& 4 / \mathrm{m} \\
& \frac{4}{m} \frac{2}{m} \frac{2}{m}(=4 / \mathrm{mmm})
\end{aligned}
$$

' n / m ' = axis n and normal to mirror m along same direction (i.e. plane of the mirror \perp to axis n)

There exists another notation: Schoenflies symbol \rightarrow widely used in spectroscopy (see appendix)
Convenient way to represent and visualize the point groups: stereographic projections (see appendix)

1. Point Group Symmetry: Points groups of molecules

SF_{6} molecule $\begin{gathered}2 \& m \\ \text { (tertiary) }\end{gathered} \underbrace{\overline{3} \text { (secondary) }} \begin{aligned} & 4 \& m \text { (primary) }\end{aligned} \rightarrow$ Point group: $\begin{aligned} & \frac{4}{m} \overline{3} \frac{2}{m}\end{aligned}(=m \overline{3} m)$

\rightarrow Point group: $\overline{4} 3 m$

Octahedral site : $m \overline{3} m$ symmetry

Tetrahedral site $: \overline{4} 3 m$ symmetry

1. Point Group Symmetry: Classification - The 32 point groups

| Order of the point symmetry along the:
 primary
 direction | | secondary
 direction | tertiary
 direction |
| :---: | :---: | :--- | :--- | | Point groups |
| :---: |
| (short symbols) | and Laue classes | (see appendix |
| :--- |
| for their |
| stereographic |
| projection) |

1. Point Group Symmetry: Prediction for macroscopic properties

- Example: dielectric properties

They can only be found for particular crystal symmetries
Piezoelectricity \rightarrow point groups that do not possess inversion
Ferroelectricity and pyroelectricity
$\rightarrow \quad$ - piezolectric point groups, i.e. non centrosymmetric

- with a unique polar axis: $\vec{p} \| n$-axis and contained in the plane of the mirror(s)

```
1, 2, m, 2mm, 3, 3m,4,4mm, 6, 6mm
polar groups
```


Point group: $3 m$
$\rightarrow \exists$ dipolar moment ($p=1.46$ Debye)

2. Translation Symmetry: Lattice and motif

At the atomic scale, \exists translation vectors \vec{T} that put the crystallographic structure in coincidence with itself.

$$
\vec{T}=u \vec{a}+v \vec{b}+w \vec{c} \text { with } u, v, w \text { integers (positive or negative) }
$$

$\vec{a}, \vec{b}, \vec{c}$ are called basis vectors (non-coplanar elementary translation vectors defining a right-handed system). The volume they define is called the unit cell.

The set of extremities of the \vec{T} vectors defines At each lattice node, an abstract network of points (= nodes): the lattice.
one associates a group of atoms: the motif.

The knowledge of the lattice (basis vectors $\vec{a}, \vec{b}, \vec{c}$) and of the motif (nature and positions x, y, z of the atoms in the cell) completely characterizes the crystalline structure.

$$
\text { N.B. : } \vec{r}=x \vec{a}+y \vec{b}+z \vec{c} \quad(|x|,|y|,|z|<1)
$$

2. Translation Symmetry: Lattice and motif

Example 1: terracotta floor tiles (2D)

Example 2: CsCl single-crystal (3D)

Unit cell:
cubic primitive

Motif:
Cs^{+}on the corner Cl^{-}at the center

The unit cell allows to pave the space with no empty space nor overlap, by applying the lattice translations.

Examples at 2D:

Rotation of order 4: compatible with translation symmetry.

Rotation of order 5: not compatible with translation symmetry \rightarrow quasicrystals
(see appendix for the mathematical demonstration)

Volume of the unit cell: $V=(\vec{a}, \vec{b}, \vec{c})=(\vec{a} \wedge \vec{b}) \cdot \vec{c}$

- Multiplicity m of a unit cell: Number of lattice nodes (and thus of motifs) per unit cell

How to count the number of lattice nodes per unit cell?
\rightarrow each lattice node counts for $1 / n$, with $n=$ number of unit cells to which it belongs

- Primitive unit cell: $m=1$

For a given lattice, all primitive unit cells have the same volume V

- Centered unit cell: $m=2,3$ or 4 (doubly, triply ... primitive) \rightarrow Volume: $V_{m}=m V$
\rightarrow used only when more symmetrical than any primitive cell of the lattice

2. Translation Symmetry: Unit cell - Example in a 2D lattice

Primitive cells: 4 lattice nodes (on corners) $\in 4$ cells $\rightarrow m=4 \times 1 / 4=1$
Doubly primitive cell: $\left.\begin{array}{rl}4 \text { nodes (on corners) } \in 4 \text { cells } \rightarrow 4 \times 1 / 4=1 \\ +2 \text { nodes (on edges) } \in 2 \text { cells } \rightarrow 2 \times 1 / 2=1\end{array}\right\} m=2$

2. Translation Symmetry: Unit cell - Example in a 2D lattice

Cell (1) is primitive but does not reflect the perpendicularity Best choice: (2)

Conventional unit cell

 (basis vectors || directions of symmetry of the lattice)N.B.: For a primitive cell, the translation vectors \vec{T} are defined by: $\vec{T}=u \vec{a}+v \vec{b}+w \vec{c}$ with u, v, w integers.

For a non primitive cell of multiplicity m, one must add $(m-1)$ translation vectors such as: $\vec{T}=u^{\prime} \vec{a}+v^{\prime} \vec{b}+w^{\prime} \vec{c}$ with $u^{\prime}, v^{\prime}, w^{\prime}$ integers or fractionnals

$$
\text { Ex.: For unit cell (2) }(m=2):\left\{\begin{array}{l}
\vec{T}_{1}=u \vec{a}^{\prime}+v \vec{b}^{\prime} \\
\vec{T}_{2}=\vec{T}_{1}+\frac{1}{2}\left(\vec{a}^{\prime}+\vec{b}^{\prime}\right)=\left(u+\frac{1}{2}\right) \vec{a}^{\prime}+\left(v+\frac{1}{2}\right) \vec{b}^{\prime}
\end{array}\right.
$$

Translation and point group symmetries:
The crystals can be classified into 6 conventional cells and 7 crystal systems each of them having a characteristic point symmetry

Number of
The 6 conventional cells are, by increasing degree of symmetry: parameters

a	triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma$
m	monoclinic	$a \neq b \neq c$	$\alpha=\gamma=90^{\circ}, \beta>90^{\circ}$
o	orthorhombic	$a \neq b \neq c$	$\alpha=\beta=\gamma=90^{\circ}$
t	tetragonal or quadratic	$a=b \neq c$	$\alpha=\beta=\gamma=90^{\circ}$
h	hexagonal ${ }^{* *}$	$a=b \neq c$	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ} *$
c	cubic	$a=b=c$	$\alpha=\beta=\gamma=90^{\circ}$

6
4
3

2

1

* $\gamma=120^{\circ}$ and not 60° (for the hexagonal reciprocal lattice: $\gamma^{*}=60^{\circ}$)
** The hexagonal conventional cell splits in two crystal systems: trigonal (axis 3) and hexagonal (axis 6); the 5 other ones are the same.

2. Translation Symmetry: Crystal system vs point group

Crystal system	Point groups and Laue classes	Primary direction	Secondary direction	Tertiary direction
triclinic	$1, \overline{1})$	-	-	-
monoclinic	$2, m, 2 / m)$	\vec{b} (ou \vec{c})	-	-
orthorhombic	$222,2 m m, m m m$	\vec{a}	\vec{b}	\vec{c}
trigonal	$3, \overline{3}$ $32,3 m,(3 m$	\vec{c}	$\vec{a}, \vec{b},-\vec{a}-\vec{b}$	-
tetragonal or quadratic	$4, \overline{4}, 4 / m$ $422,4 m m, \overline{4} 2 m, 4 / m m m$	\vec{c}	\vec{a}, \vec{b}	$\vec{a} \pm \vec{b}$
hexagonal	$6, \overline{6}, 6 / m$ $622,6 m m, \overline{6} 2 m, 6 / m m m$	\vec{c}	$\vec{a}, \vec{b},-\vec{a}-\vec{b}$	$2 \vec{a}+\vec{b}, \ldots$
cubic	$23, m \overline{3}$ $432, \overline{4} 3 m, m \overline{3} m$	$\vec{a}, \vec{b}, \vec{c}$	$\vec{a} \pm \vec{b} \pm \vec{c}$	$\vec{a} \pm \vec{b}, \ldots$

2. Translation Symmetry: The 14 Bravais lattices

- 6 primitive lattices (one for each of the 6 conventional cells),
- 8 non primitive (= centered) ones, by adding nodes in the former cells, provided
no symmetry element is lost \& the centered cell is more symmetric than any primitive unit cell.

Symbol	Centering mode	m
P	primitive	1
I	body centered	2
F	all face centered	4
A, B, C	$A-, B-, C$-face centered: $(\vec{b}, \vec{c}),(\vec{a}, \vec{c}),(\vec{a}, \vec{b})$ respectively	2
R	rhombohedrally centered: additional lattice nodes at 1/3 and $2 / 3$ of the long diagonal of the h conventional cell $(\rightarrow$ trigonal system $)$	3

N.B.: the primitive cell of the hR cell is a rhombohedral cell
$\left(a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}\right)$

nodes at $z=0$ and 1
(nodes at $z=1 / 3$

2. Translation Symmetry: The 14 Bravais lattices

Reminder:

For centered cells,
\exists additional lattice translations.

Example: I lattice
$\left\{\begin{array}{l}\vec{T}=u \vec{a}+v \vec{b}+w \vec{c} \\ \vec{T}^{\prime}=\vec{T}+\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})\end{array}\right.$
with u, v, w integers

2. Translation Symmetry: Example - The diamond structure

Si (diamond structure): cubic F lattice, motif $=$ atoms at $(0,0,0)$ and $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$
F lattice $(m=4) \rightarrow$ lattice translations:

$$
\begin{aligned}
& \vec{T}_{1}=u \vec{a}+v \vec{b}+w \vec{c}, \vec{T}_{2}=\vec{T}_{1}+\frac{1}{2}(\vec{a}+\vec{b}), \vec{T}_{3}=\vec{T}_{1}+\frac{1}{2}(\vec{b}+\vec{c}), \vec{T}_{4}=\vec{T}_{1}+\frac{1}{2}(\vec{a}+\vec{c}) \\
& \rightarrow 4 \times 2=8 \text { Si atoms per unit cell with coordinates: } \\
& (0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right) \text {, and }\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right),\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{4}\right),\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{4}\right),\left(\frac{3}{4}, \frac{1}{4}, \frac{3}{4}\right)
\end{aligned}
$$

2. Translation Symmetry: Lattice directions [uvw]

- Family of lattices directions

One can group all lattice nodes into parallel equidistant directions labelled [uvw] along the direction vector $\vec{n}_{u v w}=u \vec{a}+v \vec{b}+w \vec{c}$
$n_{u v w}$: direction parameter
u, v, w : direction indices (coprime integers)
A family of lattice directions contains all lattice points.

- Examples:

Cubic unit cell:
\rightarrow directions symmetrically equivalent are labeled $\langle 100\rangle$

2. Translation Symmetry: Net planes (hkl)

- Family of net planes

One can group all lattice nodes into parallel equidistant net planes labelled (hkl) of equation: $h x+k y+l z=m$ with m integer (>0 or <0)

The plane the closest to the origin ($m=1$) intercepts
the \vec{a} axis at $1 / h$, the \vec{b} axis at $1 / k$, and the \vec{c} axis at $1 / l$.
h, k, l (integers, which are coprime for a P lattice): Miller indices
$d_{h k l}$ (distance between 2 consecutive planes): d-spacing
A family of net planes contains all lattice points.

- Examples:

 equivalent are labeled $\{110\}$

Phase transitions and symmetry relations

Example: BaTiO_{3}

$120^{\circ} \mathrm{C}$	
Tetragonal (4 mm)	Cubic ($m \overline{3} m$)
$a=4.000 \AA$	$c=4.007$ A

paraelectric
N.B.: With no external stress (pressure, electric field, ...): 3 different twins with 2 domains at 180° each

Phase transitions and symmetry relations

$2^{\text {nd }}$ order phase transition:
There exist a group / subgroup relation between the 2 phases
Example: cooling down \rightarrow symmetry lowers (change of point group)

Relation between the 7 crystal systems

Group / subgroup relations between the 32 point groups
Source: ITC, volume A, page 796

3. Space group symmetry

Crystal $=$ lattice + motif

translations \vec{T}

$+$
\exists symmetries acting inside the motif (symmetry planes and axes)

14 Bravais lattices

Point symmetries (32 point groups) combined or not with a fractional translation

- Describe the symmetry of the internal structure of crystals
- Allow to classify all the crystals
- International Tables for Crystallography (ITC) (https://it.iucr.org)
- Bilbao Crystallographic Server (http://www.cryst.ehu.es)
- A Hypertext Book of Crystallographic Space Group Diagrams and Tables (http://img.chem.ucl.ac.uk/sgp/mainmenu.htm)

3. Space group symmetry

| home | resources | purchase | contact us | help
INTERNATIONAL TABLES Resources
|A|A1|B|C|D|E|F|G|

Home > Resources

International Tables for Crystallography

Resources

The following resources are available as part of International Tables Online

- Search for a crystallographic symmetry group

Go to space group \quad No. 1(P1) \quad Go

- Symmetry database
- Retrieve scattering factors for electron diffraction
- Plot scattering factors for electron diffraction

Retrieve scattering lengths for neutron diffraction

- Resources for Volume D (Tenxar and GI*KoBo-1)
- Superspace Group Finder
- CIF dictionaries
- Core CIF Dictionary

Electron Density CIF Dictionary

- Image CIF Dictionary
- Macromolecular CIF Dictionary
- Modulated Structures CIF Dictionary

Powder CIF Dictionary

- Symmetry CIF Dictionary

Space-group symmetry

GENPOS HKLCOND MAXSUB SERIES WYCKSETS NORMALIZER KVEC
SYMMETRY OPERATIONS IDENTIFY GROUP

(i) www.cryst.ehu.es

bilbao crystallographic server

 WYCKPOS

Generators and General Positions of Space Groups Wyckoff Positions of Space Groups Reflection conditions of Space Groups Maximal Subgroups of Space Groups Series of Maximal Isomorphic Subgroups of Space Groups Equivalent Sets of Wyckoff Positions
Normalizers of Space Groups
The k-vector types and Brillouin zones of Space Groups Geometric interpretation of matrix column representations of Identification of a Space Group from a set of generators in ar
(i) img.chem.ucl.ac.uk/sgp/mainmenu.htm

A Hypertext Book of
Crystallographic Space Group Diagrams and Tables

Medium-Resolution Space Grou
Diagrams and Tables $\frac{\text { Diagrams and Tables }}{1024 \times 768 \text { pixel screens) }}$

3. Space group symmetry: Symmetry planes

- Glide plane

Combination of a reflection (through a plane) and a fractional translation \vec{t} || plane acting inside the unit cell

Example: glide plane $a \perp \vec{c} \quad(\vec{t} \| \vec{a})$ $a \times a \rightarrow$ lattice translation

$$
P_{0} P_{2}=\vec{a} \rightarrow \vec{t}=\frac{\vec{a}}{2}
$$

(see appendix for the Seitz notation and the 4×4 matrix representation)

3. Space group symmetry: Symmetry planes

The various symmetry planes and their Hermann-Mauguin symbol

Printed symbol	Symmetry plane	Graphic symbol		Nature of the gliding (fractional translation \vec{t})	
		\perp projection plane	\|	projection plane	
m	Mirror	—	1.	none	
a, b, c	Axial glide plane	$\bar{t} \\| l$ proj. plane $\ddot{t} \perp$ proj. plane		$\begin{gathered} a / 2, b / 2, \text { or } c / 2 \\ \text { respectively } \end{gathered}$	
e	Double glide plane	..-.--..-.	\downarrow	$\begin{gathered} a / 2 \text { and } b / 2, b / 2 \text { and } c / 2, \text { or } a / 2 \\ \text { et } c / 2 ; O R(a \pm b) / 2 \text { and } c / 2, \\ \text { etc } \ldots \text { for } t \text { and } c \text { systems } \end{gathered}$	
n	Diagonal glide plane	-.-.-.-.	\square	$(a+b) / 2,(b+c) / 2$ or $(c+a) / 2$; OR $(a+b+c) / 2$ in some cases for t and c systems	
d	Diamond glide plane	-ヶ.こ.	$\overbrace{1-1}^{\frac{1}{8}}$	$(a+b) / 4,(b+c) / 4$ or $(c+a) / 4$; OR $(a+b+c) / 4$ in some cases for t and c systems	

3. Space group symmetry: Symmetry axes

- Screw axes

Combination of a rotation (around an axis n) and a fractional translation $\vec{t} \|$ axis

Example: screw axis $n_{p} \| \vec{c}$
$n_{p} \times \cdots \times n_{p} \rightarrow$ lattice translation
n times

$$
\overrightarrow{P_{0} P_{n}}=n \vec{t}=p \vec{c}
$$

with $\left\{\begin{array}{l}n=1,2,3,4, \text { or } 6 \\ p \text { integer }<n\end{array}\right.$
$\rightarrow \overrightarrow{\mathrm{t}}=\frac{p}{n} \vec{c}$ with $p=0,1, \ldots, n-1$

Example: $4_{3} \| \vec{c}$

Axis $4_{3}: \vec{t}=\frac{3}{4} \vec{C}$

3. Space group symmetry: Symmetry axes

The various symmetry axes and their Hermann-Mauguin symbol (projection plane $\perp \vec{c}$)

3. Space group symmetry: How to name all space groups?

- International notation (Hermann-Mauguin symbol)
$1^{\text {st }}$ letter :
Following letters:
capital letter designing the centering mode $P, I, F, A(B$ or $C), R$ nature of the symmetry elements

Symmetry axes (with n max and $p \mathrm{~min}$) and planes $(m>e>a>b>c>n>d)$

Along the primary, secondary, and tertiary directions: 3 non equivalent directions of symmetry (the same ones as point groups)

Conventional cell	Primary direction	Secondary direction	Tertiary direction
triclinic	A single symbol (1 or $\overline{1}$), thus no direction of symmetry		
monoclinic	A single direction of symmetry: b or c (order 2, unique axis)		
orthorhombic	a (order 2)	b (order 2)	c (order 2)
tetragonal	$[001]$ (order 4)	$<100\rangle$, i.e. a and b (order 2)	$<110\rangle$, i.e. $a \pm b$ (order 2)
hexagonal	c (order 6 or 3)	$<100\rangle$, i.e. $a, b,[1 \overline{1} 0]$ (order 2)	$<210\rangle$, i.e. [210], $[120],[1 \overline{1} 0]$ (order 2)
cubic	$<100\rangle$ (order 4 or 2)	$<111\rangle$ (order 3)	$<110\rangle$ (order 2)

3. Space group symmetry: The 230 space groups

3. Space group symmetry: Space group Pnma - ITC, volume A

Pnma	$D_{2 h}^{10}$	$m m m$	Orthorhombic	Continued	No. 62

Origin at $\overline{1}$ on 12,1
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; \quad 0 \leq y \leq \frac{1}{4} ; \quad 0 \leq z \leq 1$
Symmetry operations

| (1) $\frac{1}{1} \quad$ (2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$ | (3) $2\left(0, \frac{1}{2}, 0\right)$ |
| :--- | :--- | :--- | :--- |
| (5) $10, y, 0$ | (4) $2\left(\frac{1}{2}, 0,0\right) x, \frac{1}{4}, \frac{1}{4}$ |

Symmetry operations

Generators selected (1); $t(1,0,0) ; t(0,1,0) ; t(0,0,1) ;(2) ;(3) ;(5)$

Positions Multiplicity, Wyckoff letter, Site symmetry	Coordinates		Wyckoff sites	
$8 \quad d \quad 1$	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$	(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+$ (6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$	$\begin{aligned} & \text { (3) } \bar{x}, y+\frac{1}{2}, \bar{z} \\ & \text { (7) } x, \bar{y}+\frac{1}{2}, z \end{aligned}$	(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$ (8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$
$4 \quad c \quad . m$.	$x, \frac{1}{4}, z$	$\bar{x}+\frac{1}{2}, \frac{3}{4}, z+\frac{1}{2}$	$\bar{x}, \frac{3}{4}, \bar{z} \quad x+\frac{1}{2}, \frac{1}{4}$,	
$\begin{array}{llll}4 & b & \overline{1}\end{array}$	0, $0, \frac{1}{2}$	$\frac{1}{2}, 0,0 \quad 0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	
$4{ }^{4} \times$ a $\overline{1}$	0,0,0	$\frac{1}{2}, 0, \frac{1}{2} \quad 0, \frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	

Reflection conditions

General:

$0 k l: k+l=2 n$
$h k 0: h=2 n$
$h 00: h=2 n$ $0 k 0: k=2 n$
$00 l: l=2 n$

Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Symmetry of special projections

Along [001] $\mathrm{p}^{\prime} \mathrm{gm}$
Along [100] c2mm
Along [010] $p 2 g g$
$\mathbf{a}^{\prime}=\mathbf{c} \quad \mathbf{b}^{\prime}=\mathbf{a}$
$\mathbf{a}^{\prime}=\frac{1}{2} \mathbf{a} \mathbf{b} \quad \mathbf{b}^{\prime}=$
$\mathbf{a}=\mathbf{b}$
Origin at $x, \frac{1}{4}, \frac{1}{4}$$\quad \mathbf{c}$
Origin at $0, y, 0$

Maximal non-isomorphic subgroups

$$
\begin{array}{lll}
\mathbf{I} & {[2] P n 2_{1} a\left(P n a 2_{1}, 33\right)} & 1 ; 3 ; 6 ; 8 \\
& {[2] P n m 2_{1}\left(P m n 2_{1}, 31\right)} & 1 ; 2 ; 7 ; 8 \\
& {[2] P 2_{1}, 2 a\left(P m c 2_{1}, 26\right)} & 1 ; 4 ; 6 ; 7 \\
& {[2] P 2_{1} 2_{1} 2_{1}(19)} & 1 ; 2 ; 3 ; 4 \\
& {[2] P 112_{1} / a\left(P 2_{2} / c, 14\right)} & 1 ; 2 ; 5 ; 6 \\
& {[2] P 2_{1} / n 11\left(P 2_{1} / c, 14\right)} & 1 ; 4 ; 5 ; 8 \\
& {[2] P 12_{1} / m 1\left(P 2_{1} / m, 11\right)} & 1 ; 3 ; 5 ; 7 \\
& \text { IIa } & \text { none } \\
& &
\end{array}
$$

IIb none
Maximal isomorphic subgroups of lowest index
IIc [3] Pnma $\left(\mathbf{a}^{\prime}=3 \mathbf{a}\right)(62)$; [3] Pnma $\left(\mathbf{b}^{\prime}=3 \mathbf{b}\right)(62)$; [3] Pnma $\left(\mathbf{c}^{\prime}=3 \mathbf{c}\right)(62)$
See appendix for more explanations

Minimal non-isomorphic supergroups
I none
II [2]Amma (Cmcm, 63); [2] Bbmm (Cmcm, 63); [2]Ccme (Cmce, 64); [2] Imma (74); [2]Pcma $\left(\mathbf{b}^{\prime}=\frac{1}{2} \mathbf{b}\right)($ Pbam, 55); [2] Pbma $\left(\mathbf{c}^{\prime}=\frac{1}{2} \mathbf{c}\right)\left(\right.$ Pbcm, 57); [2] Pnmm $\left(\mathbf{a}^{\prime}=\frac{1}{2} \mathbf{a}\right)($ Pmmn, 59)

3. Space group symmetry: Space group Pnma-ITC, volume A

$$
\begin{aligned}
& \text { Point group: } \frac{2}{m} \frac{2}{m} \frac{2}{m} \\
& \left(n, m, a \rightarrow m \text { and } 2_{1} \rightarrow 2\right)
\end{aligned}
$$

Screw axis $2_{1} \| \vec{a}$ Glide plane $n \perp \vec{a}$

Screw axis $2_{1} \| \vec{c}$ Glide plane $a \perp \vec{c}$
Screw axis $2_{1} \| \vec{b}$
Mirror plane $m \perp \vec{b}$

Symmetry operations

(1) 1
(2) $2\left(0,0, \frac{1}{2}\right)+1,0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{2}$
(5) $\overline{1} \quad 0,0,0$
(6) a $x, y, \frac{1}{4}$
(7) $m x, \frac{1}{4}, z$
(8) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \underset{4}{\frac{1}{4}, y, z}$

2-fold rotation followed by $\vec{t}=\frac{1}{2} \vec{c}$ i.e. axis $2_{1} \| \vec{c}$
axis || \vec{c} located at
$x=\frac{1}{4}$ and $y=0$

Glide plane n with $\vec{t}=\frac{1}{2}(\vec{b}+\vec{c}) \quad$ plane $\perp \vec{a}$ located at $x=\frac{1}{4}$

3. Space group symmetry: Space group Pnma - ITC, volume A

Wyckoff sites: List of the different sites from the most general (i.e. less symmetrical) to the less general position (i.e. most symmetrical: special position)

3. Space group symmetry: Space group Pnma - Univ. London website

3. Space group symmetry: Space group Pnma - Bilbao Cryst. Server

bilbao crystallographic server

Space-group symmetry

http://www.cryst.ehu.es

Wyckoff Positions of Group 62 (Pnma)

Multiplicity	Wyckoff letter	$\begin{array}{\|c\|} \hline \text { Site } \\ \text { symmetry } \end{array}$	Coordinates
8	d	1	$\begin{array}{\|llll} \hline(x, y, z) & (-x+1 / 2,-y, z+1 / 2) & (-x, y+1 / 2,-z) & (x+1 / 2,-y+1 / 2,-z+1 / 2) \\ \left(-x_{1}-y,-z\right) & (x+1 / 2, y,-z+1 / 2) & (x,-y+1 / 2, z) & (-x+1 / 2, y+1 / 2, z+1 / 2) \end{array}$
4	c	.m.	($x, 1 / 4, z)(-x+1 / 2,3 / 4, z+1 / 2)(-x, 3 / 4,-z)(x+1 / 2,1 / 4,-z+1 / 2)$
4	b	-1	$(0,0,1 / 2)(1 / 2,0,0)(0,1 / 2,1 / 2)(1 / 2,1 / 2,0)$
4	a	-1	$(0,0,0)(1 / 2,0,1 / 2)(0,1 / 2,0)(1 / 2,1 / 2,1 / 2)$

General Positions of the Group 62 (Pnma)

No.	($\mathbf{x}, \mathrm{y}, \mathrm{z}$) form	Matrix form	Symmetry operation	
			ITA	Seitz 3
1	$\mathrm{x}_{\mathrm{y}}^{\mathrm{y}} \mathrm{y}$ z	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$	1	\{1\|0\}
2	-x+1/2,-y,z+1/2	$\left(\begin{array}{cccc}-1 & 0 & 0 & 1 / 2 \\ 0 & -1 & 0 & 1 / 2 \\ 0 & 0 & 1 & 1 / 2\end{array}\right)$	$2(0,0,1 / 2)$ 1/4, $0, \mathrm{z}$	\{2001\|1/2 $01 / 2\}$

Symmetry operation

3. Space group symmetry: Space group Pnma- LaMnO_{3}

Example: LaMnO_{3} (space group Pnma)

	x	y	z
La	0.518	0.25	0.007
Mn	0	0	0
O_{1}	-0.005	0.25	0.075
O_{2}	0.288	0.096	0.226

$(\equiv$ Pbnm if $\vec{a} \rightarrow \vec{b} \rightarrow \vec{c} \rightarrow \vec{a})$
$\rightarrow 4 c$
$\rightarrow 4 a$
$\rightarrow 4 c$
$\rightarrow 8 d$

$$
\rightarrow \text { Motif }=\mathrm{La}_{4} \mathrm{Mn}_{4} \mathrm{O}_{12}
$$

7 coordinates to determine out of $(4+4+12) \times 3=60!!!$

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

1 (1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(5) $\bar{x}, \bar{y}, \bar{z}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(7) $\boldsymbol{x}, \bar{y}+\frac{1}{2}, z$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

$\mathrm{La}, \mathrm{O}_{1} 4 \quad c . m$.	$x, \frac{1}{2}, z$	$\bar{x}+\frac{1}{2}, \frac{3}{4}, z+\frac{1}{2}$		$\bar{x}, \frac{3}{4}, \bar{z}$	$x+\frac{1}{2}, \frac{1}{4}, \bar{z}+\frac{1}{2}$
$4{ }^{4} \quad b \quad \overline{1}$	0,0, $\frac{1}{2}$	$\frac{1}{2}, 0,0$	0, $\frac{1}{2}$, $\frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	
$\mathrm{Mn} 4 \quad \mathrm{a} \overline{\mathrm{l}}$	0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$	0, ${ }_{2}^{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	

3. Space group symmetry: Websites for structures

COD Crystallography Open Database

Crystal symmetry: Summary

Point group symmetry:
Allows to predict the existence or not of some macroscopic physical properties And in the case they do exist, the direction of the vectorial quantity or form of the tensor, ...

Translation symmetry:
Responsible for diffraction \rightarrow see lecture II
Structure completely described by:
Space group + lattice parameters + asymmetric unit
Starting from the asymmetric unit, use the Wyckoff positions to calculate the coordinates of the other atoms of the motif, then apply the lattice translations

Thank you

REFERENCES:

- Transcript of a similar lecture:
"Crystallography: Symmetry groups and group representations", B. Grenier and R. Ballou, Chapter 6 in "Contribution of symmetries in condensed matter", EPJ Web of Conferences Vol. 22, EDP Science (2012).
- Slides and video of a similar lecture:
website: http://gdr-meeticc.cnrs.fr/ecole-du-gdr-meeticc-school v3/

