ISOE2019

International School of Oxide Electronics

June 25 - July 5, 2019
Cargèse

CRYSTAL SYMMETRY Appendix

Béatrice GRENIER
Univ. Grenoble Alpes \& CEA-IRIG-MEM
Grenoble, France

1. Point Group Symmetry: Elementary point symmetries

(Complement of Lecture - slide 5)
Point symmetries exist at the macroscopic \& atomic scales. They keep at least one point fixed: the origin

Inversion (through a point) \quad Rotation (around an axis) \rightarrow centrosymmetric crystal
\square
Rotation of order n

$$
1,2,3, \ldots
$$

$S_{\overline{1}}=\left(\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$
Det $=-1$

$$
=\text { rotation by } \frac{2 \pi}{n}
$$

\rightarrow combination of $\overline{1}$ and n

$$
\overline{1}, \overline{2}, \overline{3}, \ldots
$$

$S_{n}=\left(\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right) S_{\bar{n}}=\left(\begin{array}{ccc}-\cos \phi & \sin \phi & 0 \\ -\sin \phi & -\cos \phi & 0 \\ 0 & 0 & -1\end{array}\right)$

Reflection

(through a mirror plane)
\square
m
$S_{m}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
Det $=-1$

1. Point Group Symmetry: Rotations compatible with translation

The only orders of rotation compatible with the translation symmetry are: 1, 2, 3, 4, 6

Demonstration:

If an axis n going through A exists, there exists another one going trough B such as: $\overrightarrow{A B}=\vec{T}$
Through $a(n)$ in $A: \quad B \rightarrow B^{\prime}$
Through $a^{-1}(n)$ in $B: \quad A \rightarrow A^{\prime}$
A^{\prime} and B^{\prime} must be lattice points so that: $\overrightarrow{B^{\prime} A^{\prime}}=m \vec{T}$ with m an integer.
One can ealisy show that: $\overline{B^{\prime} A^{\prime}}=T\left(1-2 \cos \frac{2 \pi}{n}\right)$
so that one must have: $m=1-2 \cos \frac{2 \pi}{n} \Rightarrow-1 \leq m \leq 3$
$m=-1 \rightarrow n=1$
$m=0 \rightarrow n=6$
$m=1 \rightarrow n=4$
$m=2 \rightarrow n=3$
$m=3 \rightarrow n=2$

1. Point Group Symmetry: Point groups - Schoenflies symbol

Other notation of the point groups - Schoenflies symbol
$C_{n} \quad$ cyclic
$D_{n} \quad$ dihedral, or two-sided
n-fold rotation axis ($n=1,2,3,4,6$)
n-fold rotation axis plus n twofold axes \perp to that axis subscript n : addition of a mirror plane \perp to the n-fold axis ($C_{n h}, D_{n h}$) subscript v : addition of a mirror plane // to the n-fold axis ($C_{n v}, D_{n v}$)
$S_{2 n} \quad$ Spiegel $=$ mirror
T Tetrahedral symmetry of a tetrahedron
with (T_{d}) or without (T) improper rotations
$T_{h}=T$ with the addition of an inversion
0 Octahedral symmetry of an octahedron (or cube) with $\left(O_{h}\right)$ or without (O) improper operations

Other notations:

1. Point Group Symmetry: Point groups - Schoenflies symbol

International vs Schoenflies symbols (table 10.1.2.4. from the International Tables for Crystallography, Volume A)

System used in this volume	Point group		Schoenflies symbol
	International symbol		
	Short	Full	
Triclinic	$\frac{1}{1}$	$\frac{1}{1}$	$\begin{aligned} & C_{1} \\ & C_{i}\left(S_{2}\right) \end{aligned}$
Monoclinic	$\begin{aligned} & 2 \\ & m \\ & 2 / m \end{aligned}$	$\begin{gathered} 2 \\ m \\ \frac{2}{m} \end{gathered}$	$\begin{aligned} & C_{2} \\ & C_{s}\left(C_{1 h}\right) \\ & C_{2 h} \end{aligned}$
Orthorhombic	222 mm2 mmm	222 mm 2 $\frac{2}{m} \frac{2}{m} \frac{2}{m}$	$\begin{aligned} & D_{2}(V) \\ & C_{2 v} \\ & D_{2 h}\left(V_{h}\right) \end{aligned}$
Tetragonal	$\begin{aligned} & 4 \\ & \overline{4} \\ & 4 / \mathrm{m} \\ & 422 \\ & 4 \mathrm{~mm} \\ & \overline{4} 2 \mathrm{~m} \\ & 4 / \mathrm{mmm} \end{aligned}$	$\begin{aligned} & \frac{4}{4} \\ & \frac{4}{m} \\ & 422 \\ & 4 m m \\ & \overline{4} 2 m \\ & \frac{4}{m} \frac{2}{m} \frac{2}{m} \end{aligned}$	$\begin{aligned} & C_{4} \\ & S_{4} \\ & C_{4 h} \\ & D_{4} \\ & C_{4 v} \\ & D_{2 d}\left(V_{d}\right) \\ & D_{4 h} \end{aligned}$

Trigonal	$\begin{aligned} & 3 \\ & \overline{3} \\ & 32 \end{aligned}$	$\begin{aligned} & 3 \\ & \overline{3} \\ & 32 \end{aligned}$	$\begin{aligned} & C_{3} \\ & C_{3 i}\left(S_{6}\right) \\ & D_{3} \end{aligned}$
	$3 m$	$3 m$	$C_{3 v}$
	$\overline{3} m$	$\overline{3} \frac{2}{m}$	$D_{3 d}$
Hexagonal	6	6	C_{6}
	$\overline{6}$	$\overline{6}$	$C_{3 h}$
	$6 / \mathrm{m}$	6	
	6/m	m	$C_{6 h}$
	622	622	D_{6}
	6 mm	6 mm	$C_{6 v}$
	$\overline{6} 2 m$	$\overline{6} 2 m$	$D_{3 h}$
		622	
	6/ mmm	$\bar{m} \bar{m} \bar{m}$	$D_{6} h$
Cubic	23	23	T
	$m \overline{3}$	$\frac{2}{m} \overline{3}$	T_{h}
	432	432	O
	$\overline{4} 3 m$	$\overline{4} 3 m$	T_{d}
	$m \overline{3} m$	$\frac{4}{m} \overline{3} \frac{2}{m}$	O_{h}

(Complement of Lecture - slide 7)

1. Point Group Symmetry: Point groups - Stereographic projections

How to represent a point group ?
(Complement of Lecture - slide 7)
Stereographic projection:
projection in 2 dimensions of all symmetry elements and all equivalent directions
$1^{\text {st }}$ step: Spherical projection

$P \in$ north hemisphere
$R \in$ south hemisphere
$2^{\text {nd }}$ step: Stereographic projection

$$
\begin{aligned}
& \mathrm{PS} \cap \text { equatorial plane } \Rightarrow p \text { (cross) } \\
& \mathrm{RN} \cap \text { equatorial plane } \Rightarrow r \text { (circle) }
\end{aligned}
$$

1. Point Group Symmetry: Point groups - Stereographic projections

Stereographic projection for the 10 elementary point symmetries:

$\overline{1}$

1. Point Group Symmetry: Remark about point groups names

Starting from an axis 2 and a mirror plane passing through this axis ...

Starting from an axis 3 and a mirror plane passing through this axis ...

Primary direction: 3

Secundary direction: m
Point group: $3 m$
m along two additional directions both equivalent to the secondary direction
\Rightarrow no tertiary direction

1. Point Group Symmetry: Points groups of molecules

Examples: point groups of molecules

3. Space group symmetry: Symmetry planes

- Glide plane

Combination of a reflection (through a plane) and a fractional translation $\vec{\uparrow}$ || plane
acting inside the unit cell

Example: glide plane $a \perp \vec{c}$ at $z=\frac{1}{4}$
$a \times a \rightarrow$ lattice translation

$$
P_{0} P_{2}=\vec{a} \rightarrow \vec{t}=\frac{\vec{a}}{2}
$$

Seitz notation: $\left\{\alpha \mid \vec{t}_{\alpha}\right\}=\left\{m_{z} \left\lvert\, \frac{1}{2}\right., 0, \frac{1}{2}\right\}$
4×4 matrix: $\left(\begin{array}{rrrc}1 & 0 & 0 & 1 / 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 / 2 \\ 0 & 0 & 0 & 1\end{array}\right)$
α : point symmetry
\vec{t}_{α} : translation embedding the glide translation + the position of α

3. Space group symmetry: Short vs full symbols

Short international symbols

The short symbol form leaves out symmetry elements that are implicitly present.
Example: the orthorhombic space group Pbca implicitly has three 2_{1} screw axes due to the presence of the three mutually-perpendicular glide planes. These 2_{1} axes are omitted from the short symbol, but retained in the full symbol.

Derivation of the full symbol from the short symbol
Example: Pbcn (orthorhombic)

3 glide planes at 90° from each other $\rightarrow 2$-fold axes (2 or 2_{1}) along their intersections
Glide planes $b \perp \vec{a}\left(\vec{t}=\frac{\vec{b}}{2}\right)$ and $c \perp \vec{b}\left(\vec{t}=\frac{\vec{c}}{2}\right) \quad \Rightarrow$ 2-fold axis $\| \vec{c}$ with $\vec{t}=\frac{\vec{c}}{2} \quad \Rightarrow 2_{1} \| \vec{c}$
Glide planes $c \perp \vec{b}\left(\vec{t}=\frac{\vec{c}}{2}\right)$ and $n \perp \vec{c}\left(\vec{t}=\frac{\vec{a}+\vec{b}}{2}\right) \Rightarrow$ 2-fold axis $\| \vec{a}$ with $\vec{t}=\frac{\vec{a}}{2} \quad \Rightarrow 2_{1} \| \vec{a}$
Glide planes $n \perp \vec{c}\left(\vec{t}=\frac{\vec{a}+\vec{b}}{2}\right)$ and $b \perp \vec{a}\left(\vec{t}=\frac{\vec{b}}{2}\right) \Rightarrow 2$-fold axis \| \vec{b} with $\vec{t}=\vec{b} \equiv \overrightarrow{0} \Rightarrow 2 \| \vec{b}$
Conclusion: short symbol $P b c n \rightarrow$ full symbol $P \frac{2_{1}}{b} \frac{2}{c} \frac{2_{1}}{n}$

3. Space group symmetry: Space group Pnma-ITC, volume A

Pnma $\quad D_{2 h}^{16} \quad \mathrm{mmm}$ Orthorhombic (Complement of

No. 62
$P 2_{1} / n 2_{1} / m 2_{1} / a$
$m m m \quad$ Orthorhombic
Patterson symmetry
Pmmm
Lecture - Slides 34-36)

Origin at $\overline{1}$ on 12,1
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq 1$
Symmetry operations
(1) $\frac{1}{1} 0,0,0$
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, 0, z$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$

(4)	$2\left(\frac{1}{2}, 0,0\right)$
(8)	$n\left(0, \frac{1}{4}, \frac{1}{2}\right.$

3. Space group symmetry: Space group Pnma-ITC, volume A

Bravais lattice

(1) Pnma
(3) $D_{2 h}^{16}$
(2) No. 62
(4) $P 2_{1} / n 2_{1} / m 2_{1} / a$
mm
6
Orthorhombic
Patterson symmetry Pmmm

(1)	Pnma	international symbol of the space group (reduced Hermann-Mauguin symbol)
(3)	No. 62	space group number
4.	$P \frac{2_{1}}{n} \frac{2_{1}}{m} \frac{2_{1}}{a}$	Schoenflies symbol of the space group
	complete Hermann-Mauguin symbol	

(5) point group (pure orientation symmetry) obtained from the space group by suppressing all translation operations
glide mirror \rightarrow reflection plane screw axis \rightarrow rotation axis
(6) orthorhombic crystal system \rightarrow Bravais lattice: orthorhombic primitive

3. Space group symmetry: Space group Pnma - ITC, volume A

Space group: Pnma (short international symbol)
Orthorhombic lattice ($a \neq b \neq c ; \alpha=\beta=\gamma=90^{\circ}$) $P \rightarrow \quad$ primitive
$n \rightarrow$ glide mirror $n \perp$ [100] : glide translation $\frac{\vec{b}+\vec{c}}{2}$
$m \rightarrow$ reflection plane \perp [010]
$a \rightarrow$ glide mirror $a \perp$ [001]: glide translation $\frac{\vec{a}}{2}$
$P \frac{2_{1}}{n} \frac{2_{1}}{m} \frac{2_{1}}{a}$
The complete Hermann-Mauguin symbol shows that the presence of mirrors n, m, and a implies the presence of screw axes 2_{1} along the crystallographic directions (a, b and c-axes).

Point group: mmm
By suppression of the translations: $\quad n \rightarrow m$

$$
m \rightarrow m
$$

$$
a \rightarrow m
$$

3. Space group symmetry: Space group Pnma-ITC, volume A

(7) Diagram of the symmetry elements

- Projection in (a, b) plane of the unit cell:
- \vec{a}-axis points downwards, \vec{b}-axis to the right in the page, \vec{c}-axis points upwards from the page. - origin of the cell at the upper left corner.
- All symmetry planes and symmetry axes are indicated in the diagram (nature and position). For planes and axes \perp to \vec{c}-axis, their height, if not zero, is indicated next to their graphical symbol.
- The upper left diagram corresponds to the Pnma setting ; the 2 others, as well as them three if looking at them from the left (by turning the paper from 90°), correspond to other settings of the Pnma space group (when permuting the a, b and c axes).

3. Space group symmetry: Space group Pnma-ITC, volume A

8 Diagram of the equivalent positions

- Projection of the unit cell for the Pnma setting.
- Equivalent general positions (circles) inside and next to the cell.
- Height of the atoms: the symbol '+' means a distance ' $+z$ ', '-' means ' $-z$ ',
'1/2+' means ' $z+1 / 2$ ' $^{\prime}, 1 / 2-$ ' means ' $-z+1 / 2$ '
(9) Origin Position chosen in previous diagrams for the origin of the unit cell:
$\overline{1}$ on $12_{1} 1 \rightarrow$ on the inversion center located on a screw axis $2_{1} \| \vec{b}$

3. Space group symmetry: Space group Pnma-ITC, volume A

Symmetry operations
(1) $\frac{1}{1}$
0,0,0
(2) $2\left(0,0, \frac{1}{2}\right)$
(3) $2\left(0, \frac{1}{2}, 0\right) \quad 0, y, 0$
(4) $2\left(\frac{1}{2}, 0,0\right) \quad x, \frac{1}{4}, \frac{1}{2}$
$\begin{array}{ll}\text { (4) } & 2\left(\frac{1}{2}, 0,0\right. \\ \text { (8) } & n\left(0, \frac{1}{2}, \frac{1}{2}\right)\end{array} \frac{x, \frac{1}{4}, y, z}{}$
(10) Symmetry operations
(Number) - nature - position for all symmetry operations of the space group (except translations of the lattice), each of them generating one atom.

Examples:

- (2): operation number 2
$2\left(00 \frac{1}{2}\right)$: combination of a diad rotation (order 2) and
a glide translation $\vec{c} / 2 \rightarrow$ screw axis $2_{1} / / \vec{c}$-axis
$\frac{1}{4}, 0, z: \quad$ axis $\| \vec{c}$, at $x=1 / 4$ and $y=0$
- (6): operation number 6
a : glide mirror of type a (glide translation $\vec{a} / 2$)
$x, y, \frac{1}{4}: \quad$ plane $\|(\vec{a}, \vec{b})$ and thus $\perp z$, at $z=1 / 4$

3. Space group symmetry: Space group Pnma - ITC, volume A

Generators selected (1); $t(1,0,0) ; \quad t(0,1,0) ; \quad t(0,0,1) ; \quad$ (2); (3); (5)

Positions

Multiplicity,
Wyckoff letter,
Wyckoff letter,
Site symmetry
8 d 1 (1) x, y, z
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \tilde{y}, z+\frac{1}{2}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(7) $x, \bar{y}+\frac{1}{2}, z$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$
$0 k l: k+l=2 n$
$h k 0: h=2 n$
$h k 0: h=2 n$
$h 00: h=2 n$ $00: k=2 n$ $00 l: l=2 n$
Special: as above, plus

| 4 | c | .m | $x, \frac{1}{2}, z$ | $\bar{x}+\frac{1}{2}, \frac{1}{z}, z+\frac{1}{2}$ | $\bar{x}, \frac{1}{2}, \bar{z}$ | $x+\frac{1}{2}, \frac{1}{4}, \bar{z}+\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | b | $\overline{1}$ | $0,0, \frac{1}{2}$ | $\frac{1}{2}, 0,0$ | $0, \frac{1}{2}, \frac{1}{2}$ | $\frac{1}{2}, \frac{1}{2}, 0$ |

no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Symmetry of special projections

Along [001] $p 2 \mathrm{gm}$
$\boldsymbol{a}^{\prime}=\frac{1}{2} \boldsymbol{a} \quad \boldsymbol{b}^{\prime}=\boldsymbol{b}$
Maximal non-isomorphic subgroups
I $[2] P 2,2,2$, $; 2 ; 3 ; 4$
[2] $P 112 / a\left(P 2_{1} / c\right) \quad 1 ; 2 ; 5 ; 6$
$\left[\begin{array}{ll}{[2] P 12 / m 1\left(P 22_{1} / m\right)} & 1 ; 3 ; 5 ; 7\end{array}\right.$
$[2] P 2_{1} / n 11\left(P 2_{1} / c\right) \quad 1 ; 4 ; 5 ; 8$
[2]Pnm 2 $\left(P m n 2_{1}\right) \quad 1 ; 2 ; 7 ; 8$
[2]Pn $2_{1} a\left(P n a 2_{1}\right) \quad 1 ; 3 ; 6 ; 8$
$[2] P 2_{1} m a\left(P m c 2_{1}\right) \quad 1 ; 4 ; 6 ; 7$
IIa none
IIb none
Maximal isomorphic subgroups of lowest index
IIc [3]Pnma $\left(a^{\prime}=3 a\right)$; [3]Pnma $\left(b^{\prime}=3 b\right) ;[3] P n m a\left(c^{\prime}=3 c\right)$

Minimal non-isomorphic supergroups

3. Space group symmetry: Space group Pnma-ITC, volume A

(11)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)
Positions

Multiplicity,
Wy yckoff letter,
Site symmetry
$\begin{array}{llll}8 & d & 1 & \text { (1) } x, y, z \\ \text { (5) } \bar{x}, \bar{y}, \bar{z}\end{array}$

Coordinates
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(7) $x, \bar{y}+\frac{1}{2}, z$

Reflection conditions
General:
$0 k l: k+l=2 n$
$h k 0: h=2 n$
h00: $h=2 n$ 0k0: $k=2 n$ $00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$
(11)

Generators selected
= set of symmetry operations generating the SG (arbitrary choice)

- (1); (2); (3); (5): numbers of the 4 symmetries selected from the previous list
- $t(1,0,0)$; $t(0,1,0) ; t(0,0,1)$: translations of the lattice

3. Space group symmetry: Space group Pnma - ITC, volume A

Reflection conditions
General:
$0 k l: k+l=2 n$
$h k 0: h=2 n$
$h 00: h=2 n$
$0 k 0: k=2 n$
$00 l: l=2 n$
Special: as above, plus
no extra conditions
$h k l: h+l, k=2 n$
$h k l: h+l, k=2 n$

Equivalent positions and point symmetry: Wyckoff sites
List of the different sites from the most general (i.e less symemtrical) to the less general (ie. most symmetrical: special position) given in 4 columns:

1- Multiplicity of the site = number of equivalent positions for the site
\rightarrow decreases as the symmetry increases
2- Wyckoff letter: all sites are denoted by a letter, a, b, \ldots in the reversed order (from the most symmetrical to the less one)
3 - Site symmetry: symbol for the symmetry of the position of the site
4- Coordinates of all equivalent positions for the site

3. Space group symmetry: Space group Pnma - ITC, volume A

General position

Wyckoff
8 d 1
(1) x, y, z
(2) $\bar{x}+\frac{1}{2}, \bar{y}, z+\frac{1}{2}$
(3) $\bar{x}, y+\frac{1}{2}, \bar{z}$
(4) $x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \bar{z}+\frac{1}{2}$
site $8 d$
(5) $\bar{x}, \bar{y}, \bar{z}$
(6) $x+\frac{1}{2}, y, \bar{z}+\frac{1}{2}$
(7) $x, \bar{y}+\frac{1}{2}, z$
(8) $\bar{x}+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$

8 general equivalent positions generated by the 8 symmetries of the space group
\rightarrow their number corresponds to the one of the symmetry operation acting on the starting general position x, y, z (placed on a 1 axis).

Special positions

| 4 | c | .m | $x, \frac{1}{2}, z$ | $\bar{x}+\frac{1}{2}, \frac{z}{z}, z+\frac{1}{2}$ | $\bar{x}, \frac{1}{z}, \bar{z}$ | $x+\frac{1}{2}, \frac{1}{4}, \bar{z}+\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | b | $\overline{1}$ | $0,0, \frac{1}{2}$ | $\frac{1}{2}, 0,0$ | $0, \frac{1}{2}, \frac{1}{2}$ | $\frac{1}{2}, \frac{1}{2}, 0$ |

Wyckoff site 4c
special equivalent positions generated by the 8 symmetries of the space group from an atom sitting in the special position.m.
\rightarrow on the m plane $\perp \vec{b}$-axis $\rightarrow y=1 / 4 \rightarrow$ their number is twice smaller

$$
(1)=(7), \quad(2)=(8), \quad(3)=(5),(4)=(6)
$$

Wyckoff sites $4 b$ and $4 a$
4 special equivalent positions starting from an atom sitting on $\overline{1}$: $0,0,1 / 2(4 b)$ or $0,0,0(4 a) \rightarrow$ The number is also divided by 2

3. Space group symmetry: Space group I4mm - ITC, volume A

(I) 4 mm

No. 107
$C_{4 v}^{9}$
$I 4 \mathrm{~mm}$

4 mm

Patterson symmetry

Tetragonal
I4/m m m

Origin on $4 m m$
Asymmetric unit $0 \leq x \leq \frac{1}{2} ; 0 \leq y \leq \frac{1}{2} ; 0 \leq z \leq \frac{1}{2} ; \quad x \leq y$
Symmetry operations
For $(0,0,0)+$ set
$\begin{array}{ll}\text { (1) } & \\ \text { (5) } m & x, 0, z\end{array}$
For $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$ set
(1) $t\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
(5) $n\left(\frac{1}{2}, 0, \frac{1}{2}\right) \quad x, \frac{1}{4}, z$
(2) $20,0, z$
(3) $4^{+} \quad 0,0, z$
(7) $m \quad x, \bar{x}, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right) \quad 0, \frac{1}{2}, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right)$
(7) $c \quad x+\frac{1}{2}, \bar{x}, z$
(2) $2\left(0,0, \frac{1}{2}\right) \frac{1}{4}, \frac{1}{4}, z$
(6) $n\left(0, \frac{1}{2}, \frac{1}{2}\right) \frac{1}{4}, y, z$

Bravais lattice: body centered (I) tetragonal
Axis $4 \| \vec{c}$; mirrors $m \perp a$ and $b ; \quad$ mirrors $\perp[110]$ and [1 $\overline{1} 0]$

3. Space group symmetry: Space group I4mm - ITC, volume A

Symmetry operations
$\left\{\begin{array}{l}\text { For }(0,0,0)+\text { set } \\ \text { (1) } 1 \\ \text { (5) } m \quad x, 0, z \\ \text { For }\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+\text { set } \\ \text { (1) } t\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\ (5) \quad n\left(\frac{1}{2}, 0, \frac{1}{2}\right) \quad x, \frac{1}{4}, z\end{array}\right.$

I lattice
Tetrad rotation
(2) $20,0,2$

(3) $4^{+} 0,0, z$	(4) $4^{-} 0,0, z$
(7) $m x, \bar{x}, z$	(8) $m x, x, z$
(3) $4^{+}\left(0,0, \frac{1}{2}\right) \quad 0, \frac{1}{2}, z$	(4) $4^{-}\left(0,0, \frac{1}{2}\right) \frac{1}{2}, 0, z$

3) $4^{+}\left(0,0, \frac{1}{2}\right) \quad 0, \frac{1}{2}, z$
(4) $4-\left(0,0, \frac{1}{2}\right)$
(8) $n\left(\frac{1}{2}, 0, z\right.$
$\left.\frac{1}{2}, \frac{1}{2}\right)$
x, x, z

- The symmetry operations are given :
$\left\{\right.$ for an atom in $x, y, z:(0,0,0)^{+}$set
\{and for an atom in $x+1 / 2, y+1 / 2, z+1 / 2$ (due to the I lattice): $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{+}$set
- The symmetry operations are given in such a manner that they generate only 1 atom
\rightarrow the tetrad axis, starting from an atom in x, y, z, generates 3 other atoms and is thus split into 3 parts
$(0,0,0)^{+}$set: 8 symmetry operations
(2) $2 \quad 0,0, z \quad$ rotation of order 4 applied twice \rightarrow rotation 2
(3) $4^{+} 0,0, z \quad$ rotation of order 4 applied once in positive way $\left(4^{+}\right)$

(4) $4^{-} 0,0, z \quad$ rotation of order 4 applied three times in positive way
i.e. applied once in negative way (4^{-})
$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{+}$set: due to the I lattice, number of symmetry operations multiplied by 2
$\rightarrow 8$ additional symmetry operations with a glide translation

3. Space group symmetry: Space group I4mm - ITC, volume A

In addition to the $(1,0,0),(0,1,0)$ and $(0,0,1)$ translations of the lattice, one must add the translation $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ accounting for its I type.
Only one half of coordinates are given, one must add $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ to each of them to obtain all equivalent positions (Example: site $16 e \rightarrow 16$ general equivalent positions, from which only 8 are given).

