

International School of Oxide Electronics

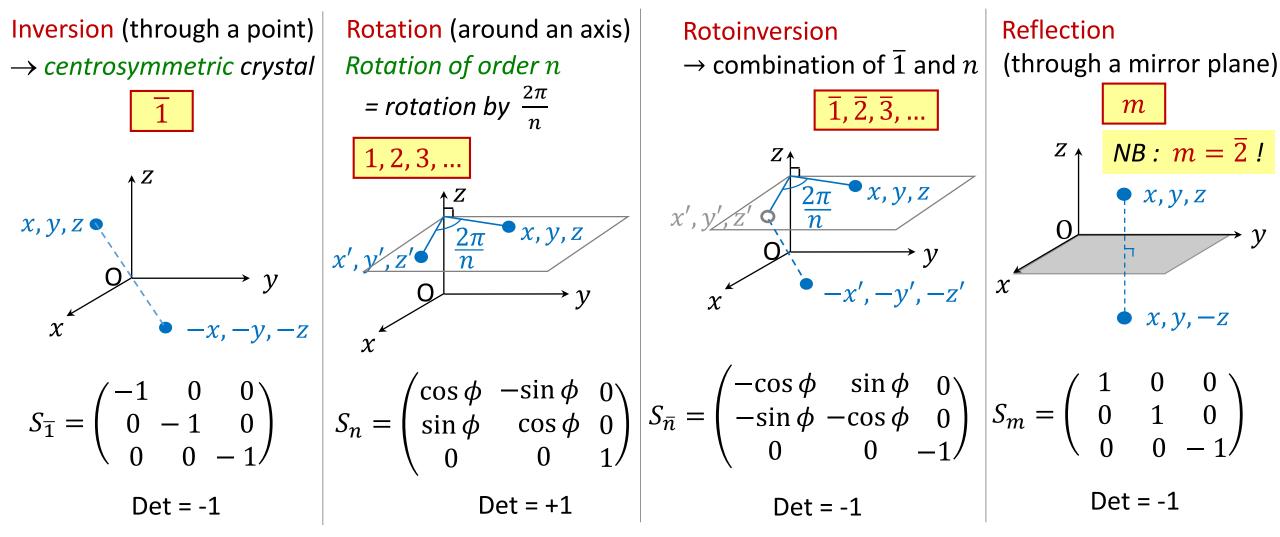
June 25 – July 5, 2019 Cargèse

CRYSTAL SYMMETRY Appendix

Béatrice GRENIER

Univ. Grenoble Alpes & CEA-IRIG-MEM

Grenoble, France



1. Point Group Symmetry: *Elementary point symmetries*

(Complement of Lecture – slide 5)

Point symmetries exist at the macroscopic & atomic scales. They keep at least one point fixed: the origin

ISOE2019 Cargèse, June 25 – July 5 2019

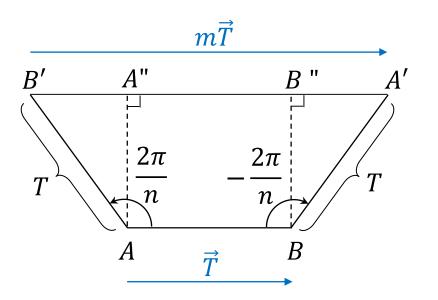
CRYSTAL SYMMETRY: Appendix

1. Point Group Symmetry: Rotations compatible with translation

(Complement of Lecture – slide 5)

The only orders of rotation compatible with the translation symmetry are: 1, 2, 3, 4, 6

Demonstration:


If an axis n going through A exists, there exists another one going trough B such as: $\overrightarrow{AB} = \overrightarrow{T}$

Through a(n) in A: $B \to B'$ Through $a^{-1}(n)$ in B: $A \to A'$

A' and B' must be lattice points so that: $\overrightarrow{B'A'} = m\overrightarrow{T}$ with m an integer.

One can ealisy show that:
$$\overline{B'A'} = T\left(1 - 2\cos\frac{2\pi}{n}\right)$$

so that one must have: $m = 1 - 2\cos\frac{2\pi}{n} \Rightarrow -1 \le m \le 3$ $m = -1 \rightarrow n = 1$ $m = 0 \rightarrow n = 6$ $m = 1 \rightarrow n = 4$ $m = 2 \rightarrow n = 3$ $m = 3 \rightarrow n = 2$

1. Point Group Symmetry: *Point groups – Schoenflies symbol*

Other notation of the point groups – *Schoenflies symbol*

(Complement of Lecture – slide 7)

n-fold rotation axis (n = 1, 2, 3, 4, 6) C_n cyclic D_n dihedral, or two-sided n-fold rotation axis plus n twofold axes \perp to that axis subscript n : addition of a mirror plane \perp to the *n*-fold axis (C_{nh} , D_{nh}) subscript v : addition of a mirror plane // to the *n*-fold axis (C_{nv} , D_{nv}) S_{2n} *Spiegel* = mirror 2n-fold rotoinversion axis (2n = 2, 4, 6) TTetrahedral symmetry of a tetrahedron with (T_d) or without (T) improper rotations $T_h = T$ with the addition of an inversion 0 Octahedral symmetry of an octahedron (or cube) with (O_h) or without (O) improper operations $S_2 = C_i$; $S_6 = C_{3i}$; $C_{1h} = Cs$ Other notations: International notation used for crystallography Schoenflies notation used for spectroscopy

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix

1. Point Group Symmetry: *Point groups – Schoenflies symbol*

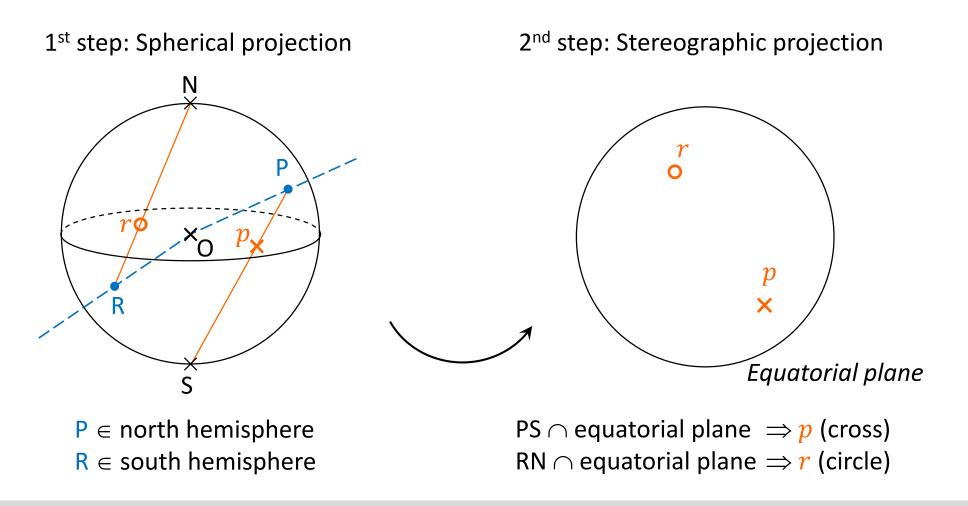
(table	a tional vs 10.1.2.4. fro stallography	m the Inter	national Ta	Trigonal 3 $\overline{3}$ 32	$\begin{vmatrix} 3\\ \overline{3}\\ 32 \end{vmatrix}$	$egin{array}{ccc} C_3 \ C_{3i}(S_6) \ D_3 \end{array}$		
	System used in this volume	Point group International sy		Schoenflies . symbol		3 <i>m</i>	3 <i>m</i>	$C_{3\nu}$
	Triclinic	Short $\frac{1}{1}$	Full 1 1 1	C_1 $C_i(S_2)$	Hexagonal	<u>3</u> m 6	$\overline{3}\frac{2}{m}$	D_{3d} C_6
	Monoclinic	2 m 2/m	$\frac{2}{m}$ $\frac{2}{m}$	C_2 $C_s(C_{1h})$ C_{2h}		6 6/m 622	$\overline{6}$ $\overline{6}$ \overline{m} 622 $6mm$ $\overline{6}2m$ $\overline{62m}$ $\overline{622}$ \overline{mmm}	C_{3h} C_{6h} D_6
	Orthorhombic	222 mm2 mmm	222 $mm2$ $\frac{2}{m}\frac{2}{m}\frac{2}{m}m$	$egin{aligned} D_2(V) \ C_{2 u} \ D_{2h}(V_h) \end{aligned}$		6mm 62m 6/mmm		$ \begin{array}{c} C_{6\nu} \\ D_{3h} \\ D_{6h} \end{array} $
	Tetragonal	$ \begin{array}{c} 4\\ \overline{4}\\ 4/m\\ 422\\ 4mm\\ \overline{4}2m\\ 4/mmm\\ \end{array} $	$ \frac{4}{\overline{4}} $ $ \frac{4}{\overline{m}} $ $ \frac{422}{4mm} $ $ \frac{422}{\overline{4mm}} $ $ \frac{42}{\overline{2m}} $ $ \frac{42}{\overline{mmm}} $	$egin{array}{cccc} C_4 & & & & & & & & & & & & & & & & & & &$	Cubic	23 m3 432 43m m3m	23 $\frac{2}{m}\overline{3}$ 432 $\overline{4}3m$ $\frac{4}{m}\overline{3}\frac{2}{m}$	T T_h O T_d O_h

(Complement of Lecture – slide 7)

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix

Béatrice GRENIER

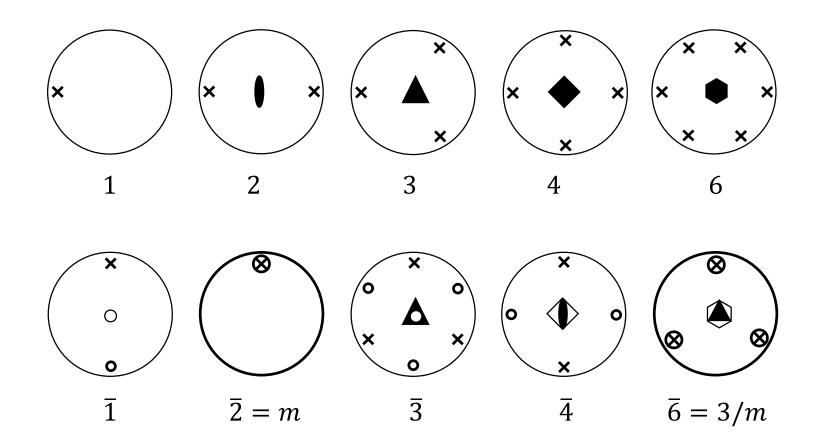

1. Point Group Symmetry: *Point groups – Stereographic projections*

How to represent a point group ?

(Complement of Lecture – slide 7)

Stereographic projection:

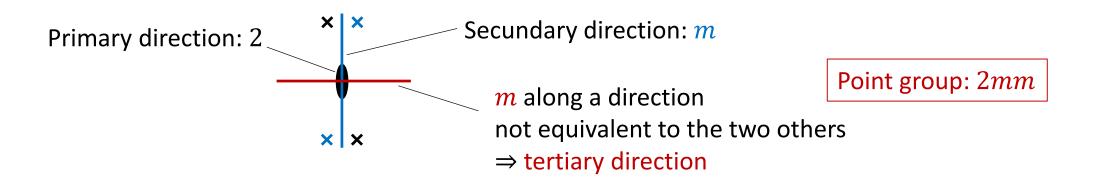
projection in 2 dimensions of all symmetry elements and all equivalent directions

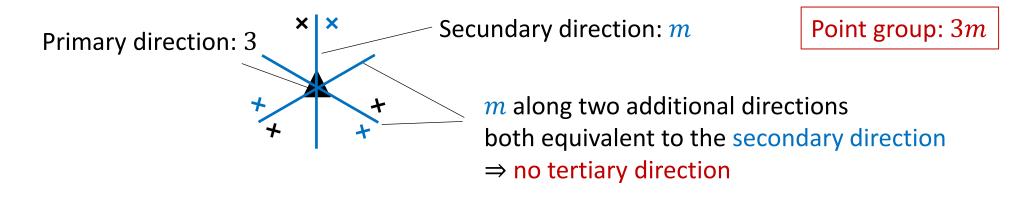


ISOE2019 Cargèse, June 25 – July 5 2019

1. Point Group Symmetry: *Point groups – Stereographic projections*

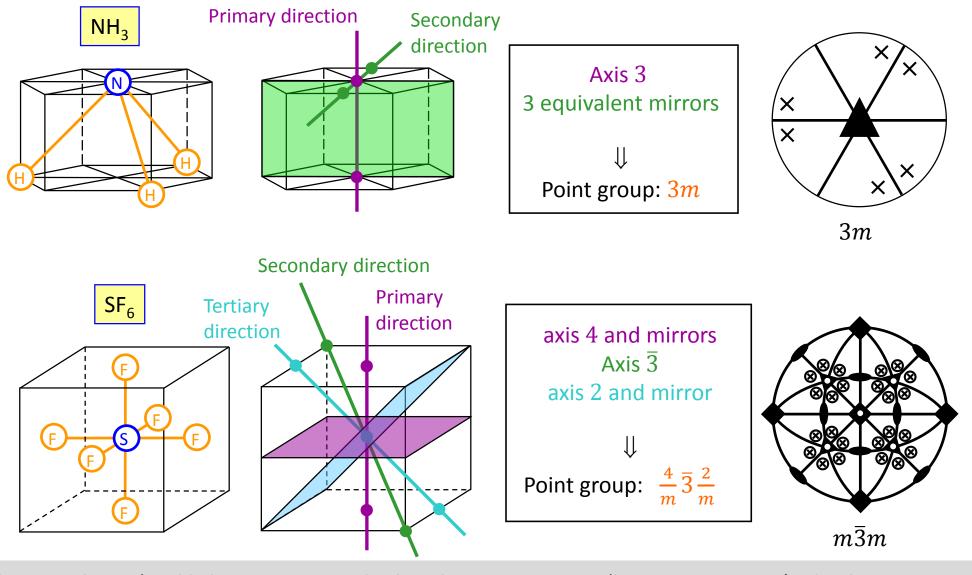
(Complement of Lecture – slide 7)


Stereographic projection for the 10 elementary point symmetries:

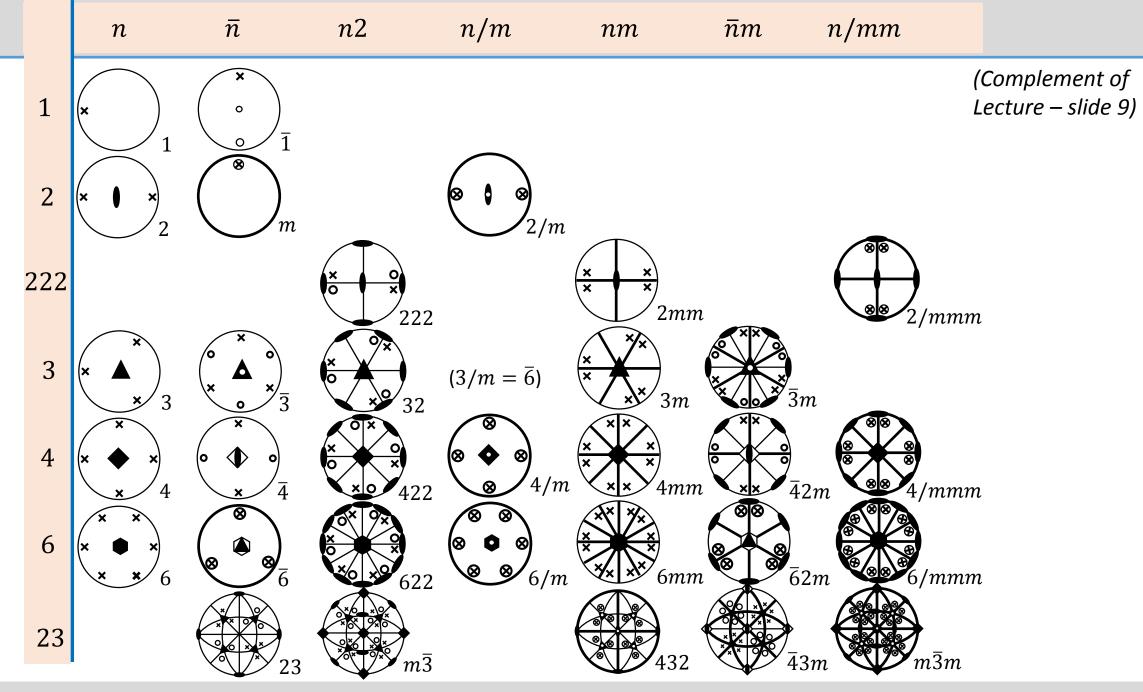

1. Point Group Symmetry: *Remark about point groups names*

(Complement of Lecture – slide 7)

Starting from an axis 2 and a mirror plane passing through this axis ...


Starting from an axis 3 and a mirror plane passing through this axis ...

1. Point Group Symmetry: *Points groups of molecules*


Examples: point groups of molecules

(Complement of Lecture – slide 8)

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix

3. Space group symmetry: Symmetry planes

Combination of a reflection (through a plane) and a fractional translation $\vec{t} \parallel$ plane acting inside the unit cell Example: glide plane $a \perp \vec{c}$ at $z = \frac{1}{4}$ $a \times a \rightarrow$ lattice translation $\times P_2$ $P_0 P_2 = \vec{a} \quad \rightarrow \quad \left| \vec{t} = \frac{\vec{a}}{2} \right|$ Seitz notation: $\left\{ \alpha | \vec{t}_{\alpha} \right\} = \left\{ m_{z} | \frac{1}{2}, 0, \frac{1}{2} \right\}$ $4 \times 4 \text{ matrix:} \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

 α : point symmetry

• <u>Glide plane</u>

 \vec{t}_{α} : translation embedding the glide translation + the position of α

ISOE2019 Cargèse, June 25 – July 5 2019 - CRYSTAL SYMMETRY: *Appendix* - Béatrice GRENIER

(Complement of Lecture – slide 29)

3. Space group symmetry: Short vs full symbols

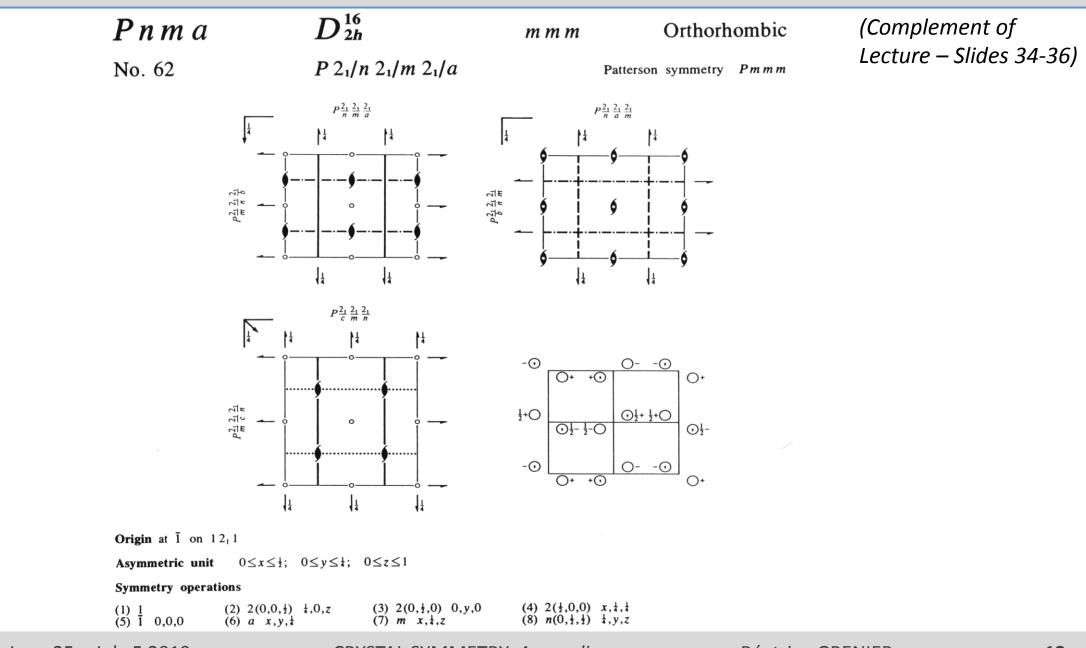
(Complement of Lecture – Slide 33)

Short international symbols

The short symbol form leaves out symmetry elements that are implicitly present.

Example: the orthorhombic space group Pbca implicitly has three 2_1 screw axes due to the presence of the three mutually-perpendicular glide planes. These 2_1 axes are omitted from the short symbol, but retained in the full symbol.

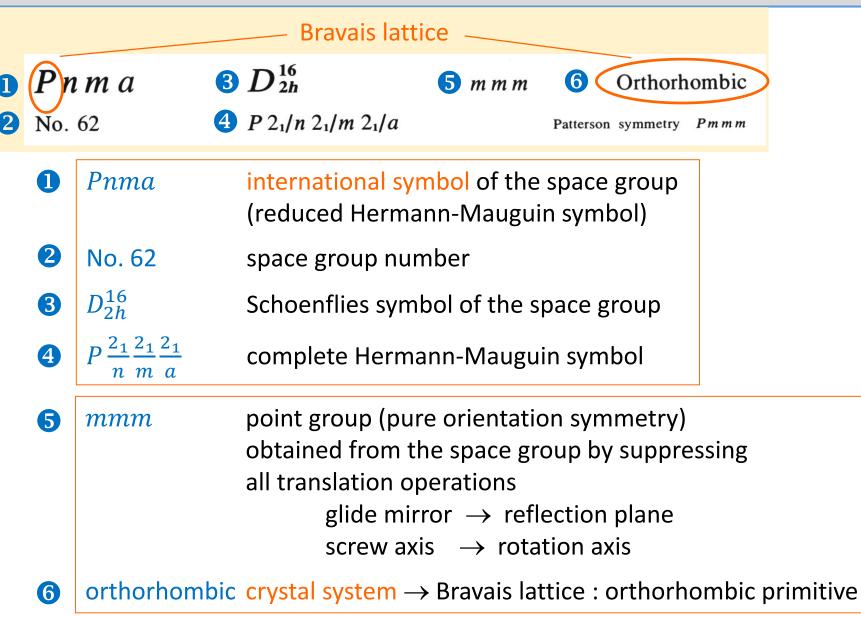
Derivation of the full symbol from the short symbol


Example: *Pbcn* (orthorhombic)

3 glide planes at 90° from each other \rightarrow 2-fold axes (2 or 2₁) along their intersections

Glide planes
$$b \perp \vec{a}$$
 ($\vec{t} = \frac{\vec{b}}{2}$) and $c \perp \vec{b}$ ($\vec{t} = \frac{\vec{c}}{2}$) \Rightarrow 2-fold axis $\parallel \vec{c}$ with $\vec{t} = \frac{\vec{c}}{2}$ \Rightarrow 2₁ $\parallel \vec{c}$
Glide planes $c \perp \vec{b}$ ($\vec{t} = \frac{\vec{c}}{2}$) and $n \perp \vec{c}$ ($\vec{t} = \frac{\vec{a} + \vec{b}}{2}$) \Rightarrow 2-fold axis $\parallel \vec{a}$ with $\vec{t} = \frac{\vec{a}}{2}$ \Rightarrow 2₁ $\parallel \vec{a}$
Glide planes $n \perp \vec{c}$ ($\vec{t} = \frac{\vec{a} + \vec{b}}{2}$) and $b \perp \vec{a}$ ($\vec{t} = \frac{\vec{b}}{2}$) \Rightarrow 2-fold axis $\parallel \vec{b}$ with $\vec{t} = \vec{b} \equiv \vec{0} \Rightarrow$ 2 $\parallel \vec{b}$

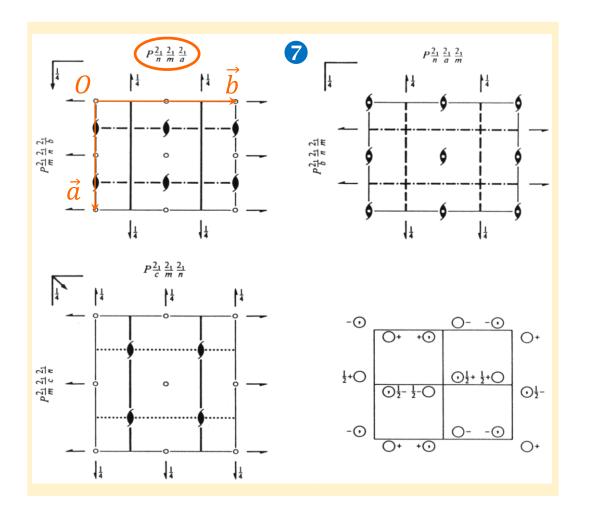
Conclusion: short symbol $Pbcn \rightarrow \text{full symbol } P \frac{2}{b} \frac{2}{c} \frac{2}{n}$


ISOE2019 Cargèse, June 25 – July 5 2019 -

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix

Béatrice GRENIER



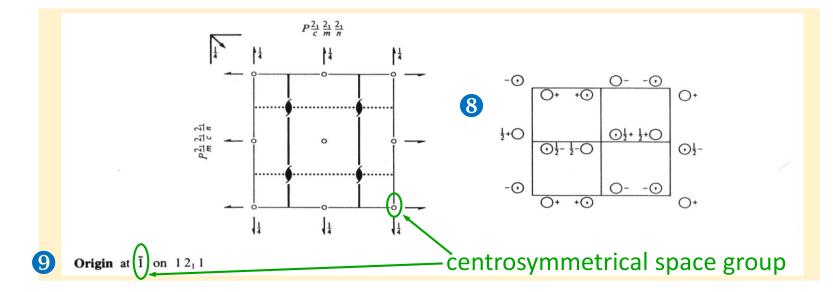
Space group:	Pnma (short international symbol)					
	Orthorhombic lattice ($a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$)					
	$P \rightarrow \text{primitive}$					
	$n \rightarrow \text{glide mirror } n \perp [100] : \text{glide translation } \frac{\vec{b} + \vec{c}}{2}$					
	$m \rightarrow$ reflection plane \perp [010]					
	$a \rightarrow$ glide mirror $a \perp [001]$: glide translation $\frac{\vec{a}}{2}$					
$P\frac{2_1}{n}\frac{2_1}{m}\frac{2_1}{a}$	The complete Hermann-Mauguin symbol shows that the presence of mirrors n , m , and a implies the presence of screw axes 2_1 along the crystallographic directions (a , b and c -axes).					
Point group :	mmm					
	By suppression of the translations : $n \rightarrow m$					

 $m \rightarrow m$

 $a \rightarrow m$

ISOE2019 Cargèse, June 25 – July 5 2019 - CRYSTAL SYMMETRY: Appendix - Béatrice GRENIER

7 Diagram of the symmetry elements


- Projection in (*a*, *b*) plane of the unit cell:
- \vec{a} -axis points downwards,

 \vec{b} -axis to the right in the page,

 \vec{c} -axis points upwards from the page.

- origin of the cell at the upper left corner.
- All symmetry planes and symmetry axes are indicated in the diagram (nature and position). For planes and axes \perp to \vec{c} -axis, their height, if not zero, is indicated next to their graphical symbol.

• The upper left diagram corresponds to the *Pnma* setting ; the 2 others, as well as them three if looking at them from the left (by turning the paper from 90°), correspond to other settings of the *Pnma* space group (when permuting the *a*, *b* and *c* axes).

8 Diagram of the equivalent positions

- Projection of the unit cell for the *Pnma* setting.
- Equivalent general positions (circles) inside and next to the cell.
- Height of the atoms: the symbol '+' means a distance '+z', '-' means '-z', ' $\frac{1}{2}$ +' means ' $z + \frac{1}{2}$ ', ' $\frac{1}{2}$ -' means ' $-z + \frac{1}{2}$ '

9 Origin Position chosen in previous diagrams for the origin of the unit cell: $\overline{1}$ on $1 2_1 1 \rightarrow$ on the inversion center located on a screw axis $2_1 \parallel \vec{b}$

(3) $2(0,\frac{1}{2},0)$ 0, y, 0 (7) m x, $\frac{1}{4},z$

Symmetry operations

(1) 1 (5) 1 0,0,0

Symmetry operations

(2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},0,z$ (6) a $x,y,\frac{1}{4}$

(Number) - nature - position for all symmetry operations of the space group (except translations of the lattice), each of them generating one atom.

(4) $2(\frac{1}{2},0,0) \quad x,\frac{1}{4},\frac{1}{4}$ (8) $n(0,\frac{1}{2},\frac{1}{2}) \quad \frac{1}{4},y,z$

Examples :

 \mathbf{m}

• (2): operation number 2

$$2\left(0\ 0\ \frac{1}{2}\right)$$
: combination of a diad rotation (order 2) and
a glide translation $\vec{c}/2 \rightarrow$ screw axis $2_1//\vec{c}$ -axis
 $\frac{1}{4}, 0, z$: axis $\parallel \vec{c},$ at $x = 1/4$ and $y = 0$
• (6): operation number 6
 a : glide mirror of type a (glide translation $\vec{a}/2$)
 $x, y, \frac{1}{4}$: plane $\parallel (\vec{a}, \vec{b})$ and thus $\perp z$, at $z = 1/4$

CONTINUED			No. 62	Pnma
Generators selected	(1); $t(1,0,0); t(0,$,1,0); t(0,0,1);	; (2); (3); (5)	
Positions				
Multiplicity, Wyckoff letter, Site symmetry	Coordina	tes		Reflection conditions
8 d 1 (1) x,y,z (5) x,y,z		(3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	General: 0kl: k+l = 2n hk0: h = 2n h00: h = 2n 0k0: k = 2n 00l: l = 2n
				Special: as above, plus
$4 \ c \ .m \ .x, \frac{1}{4}, z$	$\bar{x} + \frac{1}{2}, \frac{3}{4}, z + \frac{1}{2}$ $\bar{x}, \frac{3}{4},$	\overline{z} $x+\frac{1}{2},\frac{1}{4},\overline{z}+\frac{1}{2}$		no extra conditions
4 <i>b</i> $\bar{1}$ 0,0, $\frac{1}{2}$	$\frac{1}{2},0,0$ $0,\frac{1}{2},\frac{1}{2}$ $\frac{1}{2},$, 1 ,0		hkl: h+l, k=2n
4 <i>a</i> 1 0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$ $0, \frac{1}{2}, 0$ $\frac{1}{2}, 0$, 1 , 1		hkl: h+l, k=2n
Symmetry of special	projections			
Along [001] $p 2gm$ $a' = \frac{1}{2}a$ $b' = b$ Origin at 0,0,z		Along [100] a'=b $b'=Origin at x, \frac{1}{2}$	= c	Along [010] $p 2gg$ a'=c $b'=aOrigin at 0, y, 0$
Maximal non-isomo	phic subgroups			
$ \begin{array}{c} [2] P 2_1 2_1 2_1 \\ [2] P 1 1 2_1 / a (P) \\ [2] P 1 2_1 / m 1 (P) \\ [2] P 2_1 / m 1 (P) \\ [2] P n m 2_1 (Pm) \\ [2] P n 2_1 a (Pn) \\ [2] P 2_1 m a (Pm) \end{array} $	$\begin{array}{c} 1; 2; 3; 4\\ 2_1/c) & 1; 2; 5; 6\\ 2_1/m) & 1; 3; 5; 7\\ 2_1/c) & 1; 4; 5; 8\\ n 2_1) & 1; 2; 7; 8\\ 1 2_1) & 1; 3; 6; 8\end{array}$			
IIa none				
IIb none				
	subgroups of lowest (3a); [3] Pnma(b'=3)		r' = 3c)	

none

ISOE2019 Cargèse, June 25 – July 5 20 ^{II}

[2]Amma(Cmcm); [2]Bbmm(Cmcm); [2]Ccmb(Cmca); [2]Imma; [2]Pnmm(2a'=a)(Pmmn); [2]Pcma(2b'=b)(Pbam); [2]Pbma(2c'=c)(Pbcm)

19

IER

11		nera sitio		lected ((1); t(1,0	0,0); t(0,	1,0); t(0,0,1);	(2); (3); (5)	
	Mul Wyc	tiplicit ckoff symm	ty, letter,			Coordinat	es		Reflection conditions
	8	d	1 (1) (5)) x,y,z) x̄,ȳ,z̄	(2) \bar{x} + (6) x +	$\overline{y}, \overline{y}, \overline{z} + \frac{1}{2}$ $\overline{y}, \overline{z} + \frac{1}{2}$	(3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ (7) $x, \bar{y} + \frac{1}{2}, z$	(4) $x + \frac{1}{2}, \overline{y} + \frac{1}{2}, \overline{z} + \frac{1}{2}$ (8) $\overline{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$	General: 0kl: k+l = 2n hk0: h = 2n h00: h = 2n 0k0: k = 2n 00l: l = 2n
									Special: as above, plus
	4	с	. <i>m</i> .	$x, \frac{1}{4}, z$	$\bar{x}+\frac{1}{2},\frac{3}{4},z$	$+\frac{1}{2}$ $\vec{x}, \frac{3}{4}, \frac{3}{2}$	\overline{z} $x+\frac{1}{2},\frac{1}{4},\overline{z}+\frac{1}{2}$		no extra conditions
	4	b	ī	$0, 0, \frac{1}{2}$	±,0,0	$0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2$	±,0		hkl: h+l, k=2n
	4	а	ī	0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$	$0, \frac{1}{2}, 0 = \frac{1}{2},$	¹ / ₂ , ¹ / ₂		hkl: h+l, k=2n

= set of symmetry operations generating the SG (arbitrary choice)

- (1); (2); (3); (5): numbers of the 4 symmetries selected from the previous list
- *t*(1,0,0); *t*(0,1,0); *t*(0,0,1): translations of the lattice

(11)	Generators selected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3);	(5)
9	Positions	
	Multiplicity, Coordinates Wyckoff letter, Site symmetry	Reflection conditions
		General:
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} hk0: \ h = 2n \\ h00: \ h = 2n \\ 0k0: \ k = 2n \end{array}$
(12)	site name	00l: l=2n
Θ		Special: as above, plus
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	no extra conditions
	4 b $\overline{1}$ 0,0, $\frac{1}{2}$ $\frac{1}{2}$,0,0 0, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$,0	hkl: h+l, k=2n
	4 a $\bar{1}$ 0,0,0 $\frac{1}{2}$,0, $\frac{1}{2}$ 0, $\frac{1}{2}$,0 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$	hkl: h+l, k=2n

12 Equivalent positions and point symmetry: Wyckoff sites

List of the different sites from the most general (*i.e* less symemtrical) to the less general (*i.e.* most symmetrical: special position) given in 4 columns:

1- Multiplicity of the site = number of equivalent positions for the site

 \rightarrow decreases as the symmetry increases

2- Wyckoff letter: all sites are denoted by a letter, *a*, *b*, ... in the reversed order (from the most symmetrical to the less one)

3- Site symmetry: symbol for the symmetry of the position of the site

4- Coordinates of all equivalent positions for the site

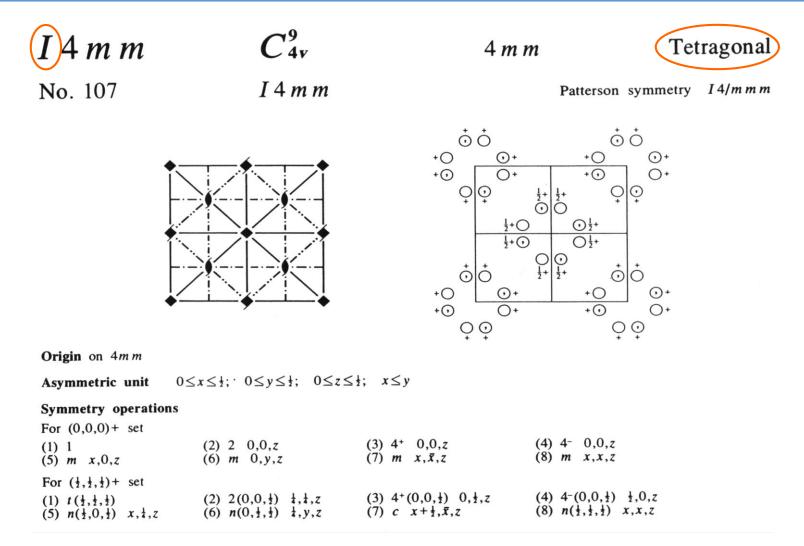
General position

Wyc	kof
site	8 <i>d</i>

8 d 1 (1) x, y, z (2) $\bar{x} + \frac{1}{2}, \bar{y}, z + \frac{1}{2}$ (3) $\bar{x}, y + \frac{1}{2}, \bar{z}$ (4) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (5) $\bar{x}, \bar{y}, \bar{z}$ (6) $x + \frac{1}{2}, y, \bar{z} + \frac{1}{2}$ (7) $x, \bar{y} + \frac{1}{2}, z$ (8) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$

8 general equivalent positions generated by the 8 symmetries of the space group \rightarrow their number corresponds to the one of the symmetry operation acting on the starting general position x, y, z (placed on a 1 axis).

4	С	. <i>m</i> .	$x, \frac{1}{4}, z$	$\bar{x}+\frac{1}{2},\frac{3}{4},$	$z + \frac{1}{2}$	$\bar{x}, \frac{3}{4}, \bar{z}$	$x + \frac{1}{2}, \frac{1}{4}, \overline{z} + \frac{1}{2}$
4	b	ī	$0, 0, \frac{1}{2}$	±,0,0	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	
4	а	ī	0,0,0	$\frac{1}{2}, 0, \frac{1}{2}$	$0, \frac{1}{2}, 0$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	


Wyckoff site 4*c*

special equivalent positions generated by the 8 symmetries of the space group from an atom sitting in the special position .m.

 \rightarrow on the *m* plane $\perp \vec{b}$ -axis $\rightarrow y = 1/4 \rightarrow$ their number is twice smaller (1) = (7), (2) = (8), (3) = (5), (4) = (6)

Wyckoff sites 4b and 4a

4 special equivalent positions starting from an atom sitting on $\overline{1}$: 0, 0, ½ (4*b*) or 0, 0, 0 (4*a*) \rightarrow The number is also divided by 2

Bravais lattice: body centered (1) tetragonal

Axis $4 \parallel \vec{c}$; mirrors $m \perp a$ and b; mirrors $\perp [110]$ and $[1\overline{1}0]$

	Symmetry operations For $(0,0,0)$ + set	_ I lattice		etrad rotation
	(1) 1 (5) $m x, 0, z$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(4) 4^- 0,0,z (8) m x,x,z
Ì	For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $n(\frac{1}{2}, 0, \frac{1}{2})$ $x, \frac{1}{4}, z$	(2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},\frac{1}{4},z$ (6) $n(0,\frac{1}{2},\frac{1}{2})$ $\frac{1}{4},y,z$	(3) $4^+(0,0,\frac{1}{2})$ $0,\frac{1}{2},z$ (7) c $x+\frac{1}{2},\overline{x},z$	(4) $4^{-}(0,0,\frac{1}{2})$ $\frac{1}{2},0,z$ (8) $n(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ x,x,z

• The symmetry operations are given :

 $\begin{cases} \text{for an atom in } x, y, z : (0, 0, 0)^+ \text{ set} \\ \text{and for an atom in } x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2} \text{ (due to the } I \text{ lattice}): \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^+ \text{ set} \end{cases}$

• The symmetry operations are given in such a manner that they generate only 1 atom \rightarrow the tetrad axis, starting from an atom in x, y, z, generates 3 other atoms and is thus split into 3 parts

 $(0, 0, 0)^+$ set: 8 symmetry operations

- (2) 2 0, 0, z rotation of order 4 applied twice \rightarrow rotation 2
- (3) 4^+ 0, 0, z rotation of order 4 applied once in positive way (4⁺)
- (4) 4^{-} 0, 0, z rotation of order 4 applied three times in positive way

i.e. applied once in negative way (4^{-})

 $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)^+$ set: due to the *I* lattice, number of symmetry operations multiplied by 2 \rightarrow 8 additional symmetry operations with a glide translation

CONTINUED		No. 107	I 4 m m
Generators selected (1); t(1,0,0	$t(0,1,0); t(0,0,1); t(\frac{1}{2},\frac{1}{2})$	(2); (3); (5)	
Positions Multiplicity, Wyckoff letter, Site symmetry (0,0,0) (1) x, y, z $(2) \overline{x}, \overline{y}, z$ $(5) x, \overline{y}, z$ $(6) \overline{x}, y, z$	$(3) \ \bar{y}, x, z \qquad (4) \ y, \bar{x}, z$	- I lattice Gen hkl hk0 0kl hhl 00l h00	lection conditions teral: : $h+k+l=2n$: $h+k=2n$: $k+l=2n$: $l=2n$: $l=2n$: $h=2n$ cial: as above, plus
$8 \ d \ .m \ .x, 0, z \ \overline{x}, 0, z$	$0, x, z = 0, \overline{x}, z$		extra conditions
$8 c m \qquad x, x, z \overline{x}, \overline{x}, z$	$\bar{x}, x, z = x, \bar{x}, z$	no	extra conditions
4 b 2mm. $0,\frac{1}{2},z$ $\frac{1}{2},0,z$		hkl	l = 2n
2 a 4mm 0,0,z		no	extra conditions

In addition to the (1,0,0), (0,1,0) and (0,0,1) translations of the lattice, one must add the translation $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ accounting for its *I* type. Only one half of coordinates are given, one must add $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ to each of them to obtain all equivalent positions (Example: site $16e \rightarrow 16$ general equivalent positions, from which only 8 are given).

ISOE2019 Cargèse, June 25 – July 5 2019

CRYSTAL SYMMETRY: Appendix - Béatrice GRENIER