Interplay of electronic, spin and orbital degrees of freedom

Jeroen van den Brink

Nussinov and JvdB, RMP 87, 1 (2015) & arXiv:1303.5922

International School of Oxide Electronics Cargese 25.06.2019

Materials in Time

3000 - 1200 B.C.E.

copper + tin = bronze

+ clay ceramics, papyrus, gold, silk, other processed/cultivated animal products, rubber (Central/South America)

A.k.a. the "Porcelain Age" 300 – 1300 C.E. porcelain ceramics (Far East)

+ ceramic glazes,

laquer,

metal/ceramic composites

A.k.a. the "Silicon Age" 1950 C.E. – ???

silicon

+ modern composites,

Plymers, nanostructured materials, "metamaterials"

Materials have defined Time

Outline Interplay of electronic, spin and orbital degrees of freedom

PART 1

Partially filled electronic shells

Atomic wavefunctions — orbitals

Electron-electron interactions U and J_H

Splitting of e_g and t_{2g} manifolds

Spin vs. orbital degrees of freedom

Mott-Hubbard and magnetism

PART 2

Superexchange with orbital d.o.f.'s

The e_g Kugel-Khomskii Hamiltonian

Goodenough-Kanamori-Anderson rules for superexchange

Relativistic spin-orbit coupling

Super exchange in iridates

Honeycomb Kitaev model - spin liquid

Topological quantum computing

PART 1

INTRODUCTION

Partially filled atomic shells

Periodic Table of Elements

									1	's 2	s 2	р 3	ls 3	3p	Sc	2+	30	1
Group – ↓ Perioc		2	3	4	5	6	7	8	9	10	11	12	13	14	<i>Ti</i> ²	+	30	1 2
1	1 H														V ²⁻	F	30	1 3
Transition	3 Li	4 Be											5 B	6 C	Cr	2+	30	/ 4
metals	11 Na	12											13 Al	14	Mr	2+	30	/ 5
3d		Mg	21	22	23	24	25	26	27	28	29	30	31	Si 32	Fe	2+	30	
	N		Sc	Ti 40	V 41	Cr 42	Mn 43	Fe 44	Co 45	Ni 46	Cu 47	Zn 48	Ga 49	Ge 50	Co	2+	30	7
4d	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Ni ²	?+	30	8
5d• -	55	56 54		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	Си	2+	30	/ 9
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq			3d ¹⁰	
				F7	50	50	60	C1	62	62	64	CE	66	67		60	70	71
4f	Lar	nthani	des	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
5f		Actini	des	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Ti: 3d² 4s²

Ce: 4f¹ 5d¹ 6s²

radius wavefunction

R(4f) << R(6s)

Atomic & Ionic Radii of Elements

Localized orbitals

High Tc copper oxides, manganites, iron-, chromium-, nickel-oxides.....

R >> a conventional metals, semiconductors $R \approx a$ correlated electron systems

Do atomic physics first, include translation symmetry later

Small overlap of neighboring atomic wave functions: 'Electrons spend a long time on one atom and hop around infrequently'

atomic wavefunctions — orbitals

Hydrogen atom

single electron states

Wavefunction

The normalized position wavefunctions, given in spherical coordinates are:^[5]

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_\ell^m(\vartheta,\varphi)$$

where:

 $\rho = \frac{2r}{na_0},$ $a_0 \text{ is the Bohr radius,}$

 $L_{n-\ell-1}^{2\ell+1}(\rho)$ are the generalized Laguerre polynomials of degree $n - \ell - 1$, and $Y_{\ell}^{m}(\vartheta, \varphi)$ is a spherical harmonic function of degree ℓ and order m.

$$\psi_{nlm} = R_{nl}Y_l^m \qquad E_n = \frac{-13.6 \ eV}{n^2}$$

Hydrogen atom

$$\psi_{n\ell m}(r,\vartheta,\varphi) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} e^{-\rho/2} \rho^\ell L_{n-\ell-1}^{2\ell+1}(\rho) \cdot Y_\ell^m(\vartheta,\varphi)$$

The quantum numbers can take the following values:

 $n = 1, 2, 3, \dots$ $\ell = 0, 1, 2, \dots, n - 1$ $m = -\ell, \dots, \ell.$

Additionally, these wavefunctions are orthogonal:

 $\langle n, \ell, m | n', \ell', m' \rangle = \delta_{nn'} \delta_{\ell\ell'} \delta_{mm'},$

where $|n, \ell, m\rangle$ is the representation of the wavefunction $\psi_{n\ell m}$ in Dirac notation, and δ is the Kronecker delta function. ^[6]

Angular momentum

The eigenvalues for Angular momentum operator:

$$L^{2} |n, \ell, m\rangle = \hbar^{2} \ell(\ell + 1) |n, \ell, m\rangle$$

$$L_{z} |n, \ell, m\rangle = \hbar m |n, \ell, m\rangle.$$

In multi-electron atoms degeneracy of *s*, *p*,*d*, *f* states with same *n* is lifted

Aufbau principle: 1s 2s 2p 3s 3p 3d 4s

For 3d screening is so efficient that in TM atoms 4s already filled while 3d partially empty **Contraction of orbitals**

How can 3d electrons profit from large effective attractive potential close to the nucleus?

3d orbitals contract!

Can 3s orbitals contract too?

No, because radial nodes of 3s are fixed by orthogonality to 1s and 2s

3d can contract because angular wavefunction is orthogonal to filled orbitals

4d & 5d therefore cannot contract much further....

...but 4f orbitals contract very much (can even be inside the core)

4f: (lanthanides)	very local	lized	Kondo-lattice mo	odels			
3d: (row 4 transitio 5f: (actinide	· · · · · · · · · · · · · · · · · · ·		en localized and lelocalized	Mott-Hubbard physics			
4d & 5d TM's	rather delo	calized	Mott-Hubbard	strong L•S			

These orbitals are NOT the spherical harmonics Y_l^m

1s 2s 3s 4s 2p 3p 3d 4d 4f

$$I=2$$

$$I-orbitals$$

$$Y_{2}^{0} = \sqrt{\frac{5}{16\pi}} (3\cos^{2}\Theta - 1)$$

$$Y_{2}^{1} = -\sqrt{\frac{15}{8\pi}} \sin\Theta\cos\Theta e^{i\phi}$$

$$Y_{1}^{-m} = (-1)^{m} (Y_{1}^{m})^{*}$$

$$Y_{2}^{2} = \sqrt{\frac{15}{32\pi}} \sin^{2}\Theta e^{2i\phi}$$

$$real \text{ wavefunctions:}$$

$$Y_{2}^{2} + Y_{2}^{-2} = \sqrt{\frac{15}{8\pi}} \sin^{2}\Theta\cos 2\phi$$

$$Spherical coordinates:$$

$$x = r\sin\Theta\cos\phi$$

$$y = r\sin\Theta\sin\phi$$

$$z = r\cos\Theta$$

$$\frac{Y_{2}^{2} + Y_{2}^{-2}}{\sqrt{2}} = \sqrt{\frac{15}{16\pi}} \sin^{2}\Theta\cos 2\phi = \sqrt{\frac{15}{16\pi}} \sin^{2}\Theta(\cos^{2}\phi - \sin^{2}\phi) = \frac{\sqrt{\frac{15}{16\pi}}}{r^{2}} (x^{2} - y^{2})$$

$$Y_{2}^{0} = \sqrt{\frac{5}{16\pi}} (3\cos^{2}\Theta - 1) = \frac{\sqrt{\frac{5}{16\pi}}}{r^{2}} \frac{1}{\sqrt{3}} (3z^{2} - r^{2})$$

$$e_{g} \text{ orbitals: } x^{2} - y^{2}, \frac{1}{\sqrt{3}} (3z^{2} - r^{2}) \text{ orbital doublet}$$

$$t_{2g} \text{ orbitals: } xy, yz, zx \text{ orbital triplet}$$

3d

electron-electron interactions

many-electron states

electron-electron interactions

Full Hamiltonian:
$$\hat{H} = \hat{H}_{KE} + \hat{H}_2$$

$$\hat{H}_2 = rac{1}{2} \int d^3r d^3r' \sum_{\sigma,\sigma'} \psi^\dagger(\mathbf{r},\sigma) \psi^\dagger(\mathbf{r}',\sigma') v(|\mathbf{r}-\mathbf{r}'|) \psi(\mathbf{r}',\sigma') \psi(\mathbf{r},\sigma)$$

Coulomb interaction $v(|\mathbf{r} - \mathbf{r}'|) = \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}$

where the $\psi(\mathbf{r})$ operators are the usual annihilation operators for an electron at position \mathbf{r} .

single - particle basisfunctions $\psi_{nlm} = R_{nl}Y_l^m$ d - d interactions matrix elements $Y_2^{m1}(\sigma)Y_2^{m2}(\sigma)Y_2^{m3}(\sigma)Y_2^{m4}(\sigma) \longrightarrow \frac{Coulomb}{exchange} J_H$

Splitting of e_g and t_{2g} manifolds: the crystal-field

Perovskite crystal structure of $Pr_{1-x}Ca_xMnO_3$

Local considerations

Spin vs. orbital degrees of freedom

Orbitals are extra degree of freedom Impact on physical properties

Order-disorder
Thermodynamics
Magnetism
Lattice distortions

Orbitals behave like electron spins

Compare orbitals and spins....

Orbitals and spins

Similarities

Localized moment emergent from electron-electron interactions

Angular momentum SU(2) algebra: [S^x,S^y]=iS^z

Possibility of long range ordering

Spin-spin and orbital-orbital interaction due to superexchange

Orbitals and spins

Differences

Non-local correlation effects: Mott-Hubbard and magnetism

Hubbard model

Consider array of Hydrogen atoms

U=0 **Bands:** Metallic behaviour

U>>t Mott-Hubbard Insulator

Antiferromagnetism

Hubbard model

Consider array of Hydrogen atoms

Coulomb interaction: *U*

U = 0 Bands: Metallic behaviour

U >> t Mott-Hubbard Insulator

Antiferromagnetism

Heisenberg
Hamiltonian
$$H_{Heis} = J \sum_{\langle ij \rangle} \vec{S_i} \cdot \vec{S_j}$$
 $[S^x, S^y] = iS^z$ Rotational invariantIn real materialsbeyond 1s: orbital d.o.f.'s
(easy axis) exchange anisotropy

PART 2

Superexchange with orbital d.o.f.'s

The e_g Kugel-Khomskii Hamiltonian

Goodenough-Kanamori-Anderson rules for superexchange

Relativistic spin-orbit coupling

Super exchange in iridates

Honeycomb Kitaev model - spin liquid

Topological quantum computing

Superexchange with orbital d.o.f.'s

The e_g Kugel-Khomskii Hamiltonian

electronic orbital-orbital hopping $t_{\alpha\beta}$

for e_q orbitals

Superexchange in presence of e_g orbitals

consider 2 sites (*i* and *j*) with each two e_q orbitals and one spin-less fermion

when 2 electrons on same site (and by definition in different orbitals): energy U

energy gain
$$-\frac{t^2}{U}$$
 possible if $T_i^z = \frac{1}{2}$ and $T_j^z = -\frac{1}{2}$
or $T_i^z = -\frac{1}{2}$ and $T_j^z = \frac{1}{2}$
 $H_{ij}^z = -\frac{t^2}{U} \Big[\Big(\frac{1}{2} + T_i^z \Big) \Big(\frac{1}{2} - T_j^z \Big) + \Big(\frac{1}{2} - T_i^z \Big) \Big(\frac{1}{2} + T_j^z \Big) \Big]$ with $J = \frac{4t^2}{U}$ this is $H_{ij}^z = \frac{J}{2} \Big(T_i^z T_j^z - \frac{1}{4} \Big)$

Superexchange in presence of e_g orbitals with spin d.o.f.'s

Kugel-Khomskii Hamiltonians

consider 2 sites (*i* and *j*) with each two e_q orbitals and one spin-full fermion

2 electrons on same site: energy U for the moment do not consider J_{H}

2 electrons in different orbitals:

$$H_{ij}^{z} = \frac{J}{2}T_{i}^{z}T_{j}^{z}$$
 (spin independent)

2 electrons in $3z^2$ -r² orbital:

$$J\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4}\right); \ J = \frac{4t^{2}}{U}$$

$$\begin{split} H_{ij}^{z} &= J \Big(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} \Big) \Big(\frac{1}{2} + T_{i}^{z} \Big) \Big(\frac{1}{2} + T_{j}^{z} \Big) + \frac{J}{2} T_{i}^{z} T_{j}^{z} \\ &= J \Big(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} \Big) \Big(\frac{1}{2} + T_{i}^{z} \Big) \Big(\frac{1}{2} + T_{j}^{z} \Big) + \frac{J}{2} \Big[\Big(\frac{1}{2} + T_{i}^{z} \Big) \Big(\frac{1}{2} + T_{j}^{z} \Big) - \frac{1}{2} \Big(\frac{1}{2} + T_{i}^{z} + T_{j}^{z} \Big) \Big] \\ &= J \Big(\mathbf{S}_{i} \cdot \mathbf{S}_{j} + \frac{1}{4} \Big) \Big(\frac{1}{2} + T_{i}^{z} \Big) \Big(\frac{1}{2} + T_{j}^{z} \Big) - \frac{J}{4} \Big(\frac{1}{2} + T_{i}^{z} + T_{j}^{z} \Big) \end{split}$$

Superexchange in presence of spins in e_g orbitals

Kugel-Khomskii Hamiltonians

$$H^{z} = J \sum_{ij} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} + \frac{1}{4} \right) \left(\frac{1}{2} + T_{i}^{z} \right) \left(\frac{1}{2} + T_{j}^{z} \right) - \frac{1}{4} \left(\frac{1}{2} + T_{i}^{z} + T_{j}^{z} \right) \text{ and } H^{x}, H^{y} \text{ by rotation}$$

defines the e_g Kugel-Khomksii model Hamiltonian:

$$H_{e_{g}}^{KK} = J \sum_{i\gamma} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} + \frac{1}{4} \right) \left(\frac{1}{2} + T_{i}^{\gamma} \right) \left(\frac{1}{2} + T_{i+\mathbf{e}_{\gamma}}^{\gamma} \right) \qquad \text{upto a constant}$$

$$because \qquad \sum_{\gamma} T_{i}^{\gamma} = 0$$
with: $T^{\gamma} = T^{z} \cos \Theta_{\gamma} + T^{x} \sin \Theta_{\gamma}$ and $\left\{ \Theta_{\gamma} \right\} = \left\{ 0, \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$
 $\gamma = 1, 2, 3$ and $\left\{ \mathbf{e}_{\gamma} \right\} = \left\{ \mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z} \right\}$ the cubic unit vectors

Kugel & Khomskii, Sov. Phys. Usp. 25, 231 (1982)

Khaliullin & Oudovenko, PRB 56, R14243 (1997)

Finite J_H superexchange with spins and e_g orbitals

consider 2 sites (*i* and *j*) with each two e_q orbitals and one spin-full fermion

$$H^{KK} = J \sum_{i\gamma} \left[\left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{4} \right) \left(\frac{1}{2} + T_i^{\gamma} \right) \left(\frac{1}{2} + T_{i+\mathbf{e}_{\gamma}}^{\gamma} \right) + \eta \left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{3}{4} \right) \left(T_i^{\gamma} T_{i+\mathbf{e}_{\gamma}}^{\gamma} - \frac{1}{4} \right) \right]$$

spin and orbitals order

$$H^{KK} = J \sum_{i\gamma} \left[\left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{4} \right) \left(\frac{1}{2} + T_i^{\gamma} \right) \left(\frac{1}{2} + T_{i+\mathbf{e}_{\gamma}}^{\gamma} \right) + \eta \left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{3}{4} \right) \left(T_i^{\gamma} T_{i+\mathbf{e}_{\gamma}}^{\gamma} - \frac{1}{4} \right) \right]$$

different orbitals occupied

same orbitals occupied

$$T_i^z T_j^z - \frac{1}{4} = 0$$
 spin exchange

 $T_i^z T_i^z - \frac{1}{4} < 0$ spin exchange is ferromagnetic

spin exchange is antiferro

very general result

Goodenough-Kanamori-Anderson rules for superexchange

Goodenough, Magnetism and the Chemical Bond, Interscience, New York (1963)

Spin and Orbital order in LaMnO₃

Goodenough (1963)

Orbital order in plane

Relativistic spin-orbit coupling

Magnetic anisotropy

$$\vec{\bigcup} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$
1. When $c \to \infty$ anisotropy $\to 0$
2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$
3. ∇V large when Z large \to heavy elements $\to 4d, 5d$
4. \vec{J} has direction & breaks rotational invariance of H

$$\vec{S_i^z S_j^z} \text{ instead of } \vec{S_i} \cdot \vec{S_j}$$
(for $S = 1/2$ we have $(S_i^z)^2 = 1/4$)

Kitaev Materials: Magnetic Iridium Oxides

214 Magnetic Iridium Oxides: corner sharing

Sr₂IrO₄: equivalent of cuprate La₂CuO₄

Edge sharing Iridium Oxides

Edge sharing Iridium Oxides

orbital dependent hopping

$$\begin{split} |j^{z} &= +\frac{1}{2} \rangle = \frac{|yz \uparrow\rangle - i|zx \uparrow\rangle - |xy \downarrow\rangle}{\sqrt{3}} \\ |j^{z} &= -\frac{1}{2} \rangle = \frac{|yz \downarrow\rangle + i|zx \downarrow\rangle - |xy \uparrow\rangle}{\sqrt{3}} \end{split}$$

Exchange Hamiltonian flux phases

exchange interaction
$$H^{M,0}_{\langle ij \rangle} = J_0 \sin^2 \phi / 2 \left(\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{4} \right)$$

exchange interaction order $J_H/U t^2/U = \eta t^2/U$

$$H^{M}_{\langle ij
angle_{\gamma}} = \left(1 + rac{\eta}{2}
ight) H^{M,0}_{\langle ij
angle} + \eta H^{K}_{\langle ij
angle_{\gamma}}$$

plus symmetry allowed residual interactions (further exchange anisotropies, and/or longer range interactions)

213 Magnetic Iridium Oxides

*Na*₂*IrO*₃: honeycomb structure

Honeycomb Kitaev model

Ru³⁺ 4d⁵ in honeycomb α-RuCl₃

Plumb, Clancy, Sandilands, Shankar, Hu, Burch, H-Y Kee & Y-J Kim, PRB 90, 041112 (2014)

Honeycomb Kitaev model I

$$H = \sum_{\langle ij \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma}$$

A 1. Introduce flux on each hexagon $\hat{O}_i = S_1^z S_2^y S_3^x S_4^z S_5^y S_6^x$

2. $[H_K, \hat{O}_i] = 0 \ \forall i$ 3. $[\hat{O}_i, \hat{O}_j] = 0 \ \forall i, j$ 4. $\hat{O_i}^2 = 1 \rightarrow O_i = \pm 1$

Flux on each hexagon: quantum number

System decomposes into 2^{Nh} sectors

(Nh=N/2)

B Algebra of bond operators $b_{\mathbf{r}\gamma}$:

bonds without common sites commute

bonds with common sites anti-commute

Honeycomb Kitaev model II

$$H = \sum_{\langle ij \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma} = \sum_{\mathbf{r}\gamma} b_{\mathbf{r}\gamma} \quad \text{bond operators } b_{\mathbf{r}\gamma}$$

B Algebra of bond operators $b_{\mathbf{r}\gamma}$:

bonds without common sites commute

bonds with common sites anti-commute

related to algebra of majorana fermions:

$$b_{\mathbf{r}\gamma} = 2i\eta_{\mathbf{r}\gamma} \ c_{\mathbf{r}}c_{\mathbf{r}+\mathbf{e}_{\gamma}}$$

C 1. anticommutator $\{c_i, c_j\} = 0 \forall i \neq j$

2. constant $\eta_{\mathbf{r}\gamma} = \pm 1$ depending on fluxes

3.
$$c_i' = c_i$$
 and $c_i^2 = 1/2$

4. groundstate is "flux free": $O_i = 1 \ \forall i$

5. "real fermion"
$$f^{\dagger} = (c_1 + ic_2)/2$$

Honeycomb Kitaev model III

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma} = \sum_{\mathbf{r}\gamma} K_{\gamma} b_{\mathbf{r}\gamma} \quad \text{bond operators } b_{\mathbf{r}\gamma}$$
$$b_{\mathbf{r}\gamma} = 2i\eta_{\mathbf{r}\gamma} \ c_{\mathbf{r}} c_{\mathbf{r}+\mathbf{e}_{\gamma}}$$

- majoranas on honeycomb lattice with nearest neighbor hopping

Honeycomb Kitaev model IV

(perturbative in B/K)

Kitaev, Ann. Phys. 321, 2 (2006)

exchange operator of the two particles

wavefunction $\psi(\mathbf{r}_1,\mathbf{r}_2)$

as
$$P_{12}^2\psi(\mathbf{r}_1,\mathbf{r}_2)=\psi(\mathbf{r}_1,\mathbf{r}_2)$$

it follows that $P_{12}\psi({f r}_1,{f r}_2)=\pm\psi({f r}_2,{f r}_1)$ $=e^{i\gamma}\psi({f r}_2,{f r}_1)$ $\gamma=0,\pi$

exchange operator of the two a particles

bosons $P_{12} = +1$ integer intrinsic angular momentumfermions $P_{12} = -1$ half integer intrinsic angular momentum

spin statistics theorem

Wolfgang Pauli

rotate one particle around the other one

= exchange them twice

after a rotation loop $R\psi({\bf r})=e^{i\gamma}\psi({\bf r})$ can $\gamma \neq 0,\pi$?

Not in 3D because all loops are topologically equivalent

after a rotation loop $R\psi({\bf r})=e^{i\gamma}\psi({\bf r})$ can $\gamma \neq 0,\pi$?

Not in 3D because all loops are topologically equivalent

after a rotation loop $R\psi({\bf r})=e^{i\gamma}\psi({\bf r})$ can $\gamma \neq 0,\pi$?

Not in 3D because all loops are topologically equivalent

and can be contracted to a rotation around its own axis

For a similar topological reason one cannot tie shoelaces in 4D

But now a particle in quasi-2D

rotate charged particle around a magnetic flux

Exchange two particles 2D

Generalise to non-Abelian (noncommutative) anyons

Suppose the anyon has an internal degree of freedom

label it by lpha so that $\psi_{lpha}(\mathbf{r}_1,\mathbf{r}_2)$

wavefunction in degenerate subspace

More than one state: store (quantum) informationqubitBraiding produces $\psi_{\alpha}(\mathbf{r}_{1},\mathbf{r}_{2}) \rightarrow e^{-i\gamma T_{\alpha\beta}}\psi_{\beta}(\mathbf{r}_{2},\mathbf{r}_{1})$ where $T_{\alpha\beta}$

Braiding anyons rotates the qubit

By braiding anyons one can perform topologically protected non-commuting operations on qubits

How to construct anyons?

introduce charged particles with attached magnetic flux

 Φ can take any value ightarrow anyon

Unfortunately does not work for Maxwell's electromagnetic fields

Jackiw & Redlich PRL 555 (1983)

Wilczek PRL 957 (1982)

Need emergent fluxes

= fluxes generated by the interactions between electrons

that act on the wavefunctions just like magnetic fluxes

Recipe: take interacting electrons, break them up in charged and fluxed particles, reassemble them

How to do that?

Fractional Quantum Hall

closing in but not there yet

Willett, Nayak, Shtengel, Pfeiffer & West, PRL **111**, 186401 (2013)

von Keyserlingk, Simon & Rosenow, PRL **115**, 126807 (2015) Topological spin liquids Kitaev Materials...

the race just started...

Kitaev model

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

spins 1/2 on honeycomb lattice

spatially anisotropic interactions

Magnetic nearest neighbor interactions in α-RuCl₃

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx}=-\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
Link 1 (×2)	94°	-5.3	1.2	-1.1	-0.7
Link 2 (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

Experimentally: zigzag order below ~8K

K large FM, J small AFM

However INS: KAFM

Banerjee et al., Nat. Mater. 4604 (2016)

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015)

Yadav, Bogdanov, Katukuri, Nishimoto, JvdB & Hozoi, Sci. Rep. 6, 37508 (2016)

Magnetic nearest neighbor interactions in α-RuCl₃

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

+ longer range Heisenberg J₂ and J₃

fractionalizing quantum particles, transmuting even their statistics, is fun

in theory new quantum liquid states can appear

in practise:

ruthenium trichloride: $|K/J| \sim 5$, *K ferro, J antiferro*

other residual interactions O(J)

magnetic field of ~10T stabelizes spin liquid?