Interplay of electronic, spin and orbital degrees of freedom

Jeroen van den Brink

Leibniz Institute for Solid State and Materials Research Dresden

Nussinov and JvdB, RMP 87, 1 (2015) \& arXiv:1303.5922

International School of Oxide Electronics
Cargese
25.06.2019

Materials in Time

2.5M - $\mathbf{3 0 0 0}$ B.C.E.

obsidian, flint

+ animal hide,
bone,
wood,
found hydrocarbons (wax/tar)

1200 B.C.E. - 300 C.E.

 iron+ "steel",
glass,
processed minerals
A.k.a. the "Steel Age" 1300-1950 C.E.
steel
+ aluminum and other metals,
alloys of same,
non-natural polymers,
extracted hydrocarbons (coaland oil)

```
3000-1200 B.C.E.
copper + tin = bronze
+ clay ceramics,
papyrus,
gold,
silk,
other processed/cultivated animal products,
rubber (Central/South America)
```

A.k.a. the "Silicon Age" 1950 C.E. - ??? silicon

+ modern composites, Plymers,
nanostructured materials, "metamaterials"

Outline Interplay of electronic, spin and orbital degrees of freedom

Partially filled electronic shells

Atomic wavefunctions - orbitals
Electron-electron interactions \boldsymbol{U} and J_{H}
Splitting of e_{g} and $t_{2 g}$ manifolds
Spin vs. orbital degrees of freedom
Mott-Hubbard and magnetism

Outline Relativistic oxide materials

PART 2
Superexchange with orbital d.o.f.'s

The e g Kugel-Khomskii Hamiltonian $^{\text {K }}$
Goodenough-Kanamori-Anderson rules for superexchange
Relativistic spin-orbit coupling
Super exchange in iridates
Honeycomb Kitaev model - spin liquid
Topological quantum computing

PART 1

INTRODUCTION

Partially filled atomic shells

Periodic Table of Elements

Atomic \& Ionic Radii of Elements

Localized orbitals

High Tc copper oxides, manganites, iron-, chromium-, nickel-oxides.....

R >> a conventional metals, semiconductors
$R \approx a$ correlated electron systems
Do atomic physics first, include translation symmetry later
Small overlap of neighboring atomic wave functions:
'Electrons spend a long time on one atom and hop around infrequently'

atomic wavefunctions - orbitals

Wavefunction

The normalized position wavefunctions, given in spherical coordinates are: ${ }^{[5]}$

$$
\psi_{n \ell m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) \cdot Y_{\ell}^{m}(\vartheta, \varphi)
$$

where:

$$
\rho=\frac{2 r}{n a_{0}}
$$

a_{0} is the Bohr radius,
$L_{n-\ell-1}^{2 \ell+1}(\rho)$ are the generalized Laguerre polynomials of degree $n-\ell-1$, and $Y_{\ell}^{m}(\vartheta, \varphi)$ is a spherical harmonic function of degree ℓ and order m.

$$
\psi_{n l m}=R_{n l} Y_{l}^{m} \quad E_{n}=\frac{-13.6 \mathrm{eV}}{n^{2}}
$$

Hydrogen atom

$$
\psi_{n \ell m}(r, \vartheta, \varphi)=\sqrt{\left(\frac{2}{n a_{0}}\right)^{3} \frac{(n-\ell-1)!}{2 n[(n+\ell)!]^{3}}} e^{-\rho / 2} \rho^{\ell} L_{n-\ell-1}^{2 \ell+1}(\rho) \cdot Y_{\ell}^{m}(\vartheta, \varphi)
$$

The quantum numbers can take the following values:

$$
\begin{aligned}
& n=1,2,3, \ldots \\
& \ell=0,1,2, \ldots, n-1 \\
& m=-\ell, \ldots, \ell .
\end{aligned}
$$

Additionally, these wavefunctions are orthogonal:

$$
\left\langle n, \ell, m \mid n^{\prime}, \ell^{\prime}, m^{\prime}\right\rangle=\delta_{n n^{\prime}} \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}}
$$

In multi-electron atoms degeneracy of
s, p, d, f states with same n is lifted

Screening of nuclear charge
the $1 s^{2}$ core screens nuclear charge
$2 p$ orbital mostly outside $1 s^{2}$ core

Fill 1s with two electrons

next electron into $2 s$ or $2 p$ orbital?
we know the answer: lithium $1 s^{2} 2 s$
why?

attractive nuclear charge is well-screened (Lithium 3+ $\rightarrow \sim 1+$) attractive nuclear charge screened less efficiently

Aufbau principle: $1 s 2 s 2 p 3 s 3 p 3 d 4 s$
For $3 d$ screening is so efficient that in TM atoms 4s already filled while 3d partially empty

Contraction of orbitals

How can 3d electrons profit from large effective attractive potential close to the nucleus?

$3 d$ orbitals contract!

Can 3 s orbitals contract too?
No, because radial nodes of $3 s$ are fixed by orthogonality to $1 s$ and $2 s$

$3 d$ can contract because angular wavefunction is orthogonal to filled orbitals
$4 d \& 5 d$ therefore cannot contract much further....
...but $4 f$ orbitals contract very much (can even be inside the core)
4f: (lanthanides) very localized Kondo-lattice models

3d: (row 4 transition metals)
5f: (actinides)
between localized and delocalized

Mott-Hubbard physics

These orbitals are NOT

the spherical harmonics \boldsymbol{Y}_{l}^{m}
$l=2$
d-orbitals

$$
\begin{aligned}
& Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \Theta-1\right) \\
& Y_{2}^{1}=-\sqrt{\frac{15}{8 \pi}} \sin \Theta \cos \Theta e^{i \phi} \quad Y_{l}^{-m}=(-1)^{m}\left(Y_{l}^{m}\right)^{*} \\
& Y_{2}^{2}=\sqrt{\frac{15}{32 \pi}} \sin ^{2} \Theta e^{2 i \phi}
\end{aligned}
$$

real wavefunctions:

$$
Y_{2}^{2}+Y_{2}^{-2}=\sqrt{\frac{15}{8 \pi}} \sin ^{2} \Theta \cos 2 \phi
$$

spherical coordinates:

$$
\begin{aligned}
& x=r \sin \Theta \cos \phi \\
& y=r \sin \Theta \sin \phi \\
& z=r \cos \Theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{Y_{2}^{2}+Y_{2}^{-2}}{\sqrt{2}}=\sqrt{\frac{15}{16 \pi}} \sin ^{2} \Theta \cos 2 \phi=\sqrt{\frac{15}{16 \pi}} \sin ^{2} \Theta\left(\cos ^{2} \phi-\sin ^{2} \phi\right)=\frac{\sqrt{\frac{15}{16 \pi}}}{r^{2}}\left(x^{2}-y^{2}\right) \\
& \quad Y_{2}^{0}=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \Theta-1\right)=\frac{\sqrt{\frac{5}{16 \pi}}}{r^{2}} \frac{1}{\sqrt{3}}\left(3 z^{2}-r^{2}\right) \\
& e_{g} \text { orbitals: } x^{2}-y^{2}, \frac{1}{\sqrt{3}}\left(3 z^{2}-r^{2}\right) \quad \text { orbital doublet } \\
& t_{2 g} \text { orbitals }: x y, y z, z x \quad \text { orbital triplet }
\end{aligned}
$$

The Orbitron

$$
3 d
$$

electron-electron interactions

many-electron states

Full Hamiltonian:

$$
\hat{H}=\hat{H}_{K E}+\hat{H}_{2}
$$

$\hat{H}_{2}=\frac{1}{2} \int d^{3} r d^{3} r^{\prime} \sum_{\sigma, \sigma^{\prime}} \psi^{\dagger}(\mathbf{r}, \sigma) \psi^{\dagger}\left(\mathbf{r}^{\prime}, \sigma^{\prime}\right) v\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \psi\left(\mathbf{r}^{\prime}, \sigma^{\prime}\right) \psi(\mathbf{r}, \sigma)$
Coulomb interaction $v\left(\mid \mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{e^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$
where the $\psi(\mathbf{r})$ operators are the usual annihilation operators for an electron at position r .
single - particle basisfunctions $\psi_{n l m}=R_{n l} Y_{l}^{m}$
d-d interactions

$$
Y_{2}^{m 1}(\sigma) Y_{2}^{m 2}\left(\sigma^{\prime}\right) Y_{2}^{m 3}\left(\sigma^{\prime}\right) Y_{2}^{m 4}(\sigma)
$$

Coulomb

Splitting of e_{g} and $t_{2 g}$ manifolds: the crystal-field

Perovskite crystal structure of $\mathrm{Pr}_{1-x} \mathrm{Ca}_{x} \mathrm{MnO}_{3}$

Local considerations

Cubic Crystal field splitting: 10 Dq

Lifting of degeneracy: lattice

Crystal field splitting of e_{g} levels \Longleftrightarrow Jahn-Teller distortion

Spin vs. orbital degrees of freedom

Orbitals are extra degree of freedom Impact on physical properties

- Order-disorder
-Thermodynamics - Magnetism
- Lattice distortions

Orbitals behave like electron spins

Compare orbitals and spins....

Orbitals and spins

Similarities

Localized moment
 emergent from electron-electron interactions

Angular momentum $\operatorname{SU}(2)$ algebra: $\left[S^{x}, S_{y}\right]=i S^{z}$
Possibility of long range ordering
Spin-spin and orbital-orbital interaction due to superexchange

Orbitals and spins

Differences

Spins		Orbitals
Weak	coupling to lattice	Strong
High	Symmetry of Hamiltonian	Low
Gapless	Excitations	Gaped
Sometimes	Frustration of order	Always

Non-local correlation effects: Mott-Hubbard and magnetism

Hopping amplitude: \boldsymbol{t}

Coulomb interaction: \boldsymbol{U}

$U=0 \quad$ Bands: Metallic behaviour

$\boldsymbol{U} \gg \boldsymbol{t} \quad$ Mott-Hubbard Insulator \quad Antiferromagnetism

Hopping amplitude: \boldsymbol{t}

Coulomb interaction: \boldsymbol{U}
$U=0 \quad$ Bands: Metallic behaviour
U >>t Mott-Hubbard Insulator

Antiferromagnetism

Heisenberg $\quad H_{H e i s}=J \sum \vec{S}_{i} \cdot \vec{S}_{j} \quad\left[S^{x}, S^{y}\right]=i S^{z}$

Hamiltonian

Rotational invariant
In real materials beyond 1s: orbital d.o.f.'s
(easy axis) exchange anisotropy

Outline Relativistic oxide materials

PART 2
Superexchange with orbital d.o.f.'s

The e g Kugel-Khomskii Hamiltonian $^{\text {K }}$
Goodenough-Kanamori-Anderson rules for superexchange
Relativistic spin-orbit coupling
Super exchange in iridates
Honeycomb Kitaev model - spin liquid
Topological quantum computing

PART 2

Superexchange with orbital d.o.f.'s

The e_{g} Kugel-Khomskii Hamiltonian

for e_{g} orbitals

Superexchange in presence of e_{g} orbitals

consider 2 sites (i and j) with each two e_{g} orbitals and one spin-less fermion

when 2 electrons on same site (and by definition in different orbitals): energy U

$$
H_{i j}^{z}=-\frac{t^{2}}{U}\left[\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}-T_{j}^{z}\right)+\left(\frac{1}{2}-T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)\right] \text { with } \quad J=\frac{4 t^{2}}{U} \quad \text { this is } \quad H_{i j}^{z}=\frac{J}{2}\left(T_{i}^{z} T_{j}^{z}-\frac{1}{4}\right)
$$

$$
\begin{aligned}
& \text { energy gain } \quad-\frac{t^{2}}{U} \text { possible if } T_{i}^{z}=\frac{1}{2} \text { and } T_{j}^{z}=-\frac{1}{2} \\
& \text { or } \quad T_{i}^{z}=-\frac{1}{2} \text { and } \quad T_{j}^{z}=\frac{1}{2}
\end{aligned}
$$

Superexchange in presence of e_{g} orbitals

Kugel-Khomskii Hamiltonians

consider 2 sites (i and j) with each two e_{g} orbitals and one spin-full fermion

2 electrons on same site: energy U for the moment do not consider J_{H}
2 electrons in different orbitals:

$$
H_{i j}^{z}=\frac{J}{2} T_{i}^{z} T_{j}^{z}
$$

(spin independent)
2 electrons in $3 z^{2}-r^{2}$ orbital: regular spin superexchange $J\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\frac{1}{4}\right) ; \quad J=\frac{4 t^{2}}{U}$

$$
\begin{aligned}
H_{i j}^{z} & =J\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)+\frac{J}{2} T_{i}^{z} T_{j}^{z} \\
& =J\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)+\frac{J}{2}\left[\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)-\frac{1}{2}\left(\frac{1}{2}+T_{i}^{z}+T_{j}^{z}\right)\right] \\
& =J\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)-\frac{J}{4}\left(\frac{1}{2}+T_{i}^{z}+T_{j}^{z}\right)
\end{aligned}
$$

Superexchange in presence of spins in e_{g} orbitals
Kugel-Khomskii Hamiltonians

$$
H^{z}=J \sum_{i j}\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{z}\right)\left(\frac{1}{2}+T_{j}^{z}\right)-\frac{1}{4}\left(\frac{1}{2}+T_{i}^{z}+T_{j}^{z}\right) \text { and } H^{x}, H^{y} \quad \text { by rotation }
$$

defines the e_{g} Kugel-Khomksii model Hamiltonian:

$$
H_{e_{g}}^{K K}=J \sum_{i \gamma}\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{\gamma}\right)\left(\frac{1}{2}+T_{i+\mathbf{e}_{\gamma}}^{\gamma}\right)
$$

upto a constant

because

$$
\sum_{\gamma} T_{i}^{\gamma}=0
$$

with: $T^{\gamma}=T^{z} \cos \Theta_{\gamma}+T^{x} \sin \Theta_{\gamma}$ and $\left\{\Theta_{\gamma}\right\}=\left\{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$
$\gamma=1,2,3$ and $\left\{\mathbf{e}_{\gamma}\right\}=\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\} \quad$ the cubic unit vectors

Kugel \& Khomskii, Sov. Phys. Usp. 25, 231 (1982)

How do spin and orbital order? $H_{e_{e}}^{K K}=J \sum_{i \gamma}\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{\eta}\right)\left(\frac{1}{2}+T_{i+e_{\gamma}}^{\eta}\right)$
Consider perfect Neel order $\quad \mathbf{S}_{i} \cdot \mathbf{S}_{j}=-\frac{1}{4} \longrightarrow H$ vanishes!
spin ordering must be antiferromagnetic
(theoretical) solution:
orbital ordering such that "1D" spin chains form, Tz
along such a chain $\left\langle\mathbf{S}_{i} \cdot \mathbf{S}_{j}\right\rangle=\frac{1}{4}-\ln 2$
\downarrow
ordering arises from interplay of spin and orbital fluctuations

Khaliullin \& Oudovenko, PRB 56, R14243 (1997)

Finite J_{H} superexchange with spins and e_{g} orbitals

consider 2 sites (i and j) with each two e_{g} orbitals and one spin-full fermion

spin and orbitals order

$$
H^{K K}=J \sum_{i \gamma}\left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)\left(\frac{1}{2}+T_{i}^{\eta}\right)\left(\frac{1}{2}+T_{i+\mathbf{e}_{\gamma}}^{\eta}\right)+\eta\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{3}{4}\right)\left(T_{i}^{\eta} T_{i+\mathrm{e}_{y}}^{\eta}-\frac{1}{4}\right)\right]
$$

| different orbitals occupied | $T_{i}^{z} T_{j}^{z}-\frac{1}{4}<0 \Longrightarrow$ |
| :--- | :--- | spin exchange is ferromagnetic

very general result

Goodenough-Kanamori-Anderson rules for superexchange

Goodenough (1963)

Orbital order in plane

Relativistic spin-orbit coupling

Magnetic anisotropy

c

$$
\vec{B}=\frac{\vec{v} \times \vec{E}}{c^{2}}, \quad \vec{E}=-\nabla V
$$

Zeeman $: \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad$ spin-orbit coupling

1. When $c \rightarrow \infty$ anisotropy $\rightarrow 0$
2. Total angular momentum $\vec{J}=\vec{L}+\vec{S}$
3. ∇V large when Z large \rightarrow heavy elements $\rightarrow 4 d, 5 d$
4. \vec{J} has direction $\&$ breaks rotational invariance of H

Ru, Mo Ir, Os $S_{i}^{z} S_{j}^{z}$ instead of $\vec{S}_{i} \cdot \vec{S}_{j}$
(for $S=1 / 2$ we have $\left(S_{i}^{z}\right)^{2}=1 / 4$)

Kitaev Materials: Magnetic Iridium Oxides

214 Magnetic Iridium Oxides: corner sharing

$\mathrm{Sr}_{2} \mathrm{IrO}_{4}$: equivalent of cuprate $\mathrm{La}_{2} \mathrm{CuO}_{4}$

$j=1 / 2$ moments
instead of $S=1 / 2$

Jackeli \& Khaliullin, PRL 102, 017205 (2009)

Edge sharing Iridium Oxides

Edge sharing Iridium Oxides

orbital dependent hopping

$$
\begin{aligned}
& \left|j^{z}=+\frac{1}{2}\right\rangle=\frac{|y z \uparrow\rangle-i|z x \uparrow\rangle-|x y \downarrow\rangle}{\sqrt{3}} \\
& \left|j^{z}=-\frac{1}{2}\right\rangle=\frac{|y z \downarrow\rangle+i|z x \downarrow\rangle-|x y \uparrow\rangle}{\sqrt{3}}
\end{aligned}
$$

Exchange Hamiltonian flux phases

exchange interaction $\quad H_{\langle i j\rangle}^{M, 0}=J_{0} \sin ^{2} \phi / 2\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}+\frac{1}{4}\right)$
exchange interaction order $\mathrm{J}_{\mathrm{H}} / \mathrm{U} \mathrm{t}^{2} / \mathrm{U}=\eta \mathrm{t}^{2} / \mathrm{U}$

$$
H_{\langle i j\rangle_{\gamma}}^{M}=\left(1+\frac{\eta}{2}\right) H_{\langle i j\rangle}^{M, 0}+\eta H_{\langle i j\rangle_{\gamma}}^{K}
$$

plus symmetry allowed residual interactions (further exchange anisotropies, and/or longer range interactions)

213 Magnetic Iridium Oxides

$\mathrm{Na}_{2} \mathrm{IrO}_{3}$: honeycomb structure

Honeycomb Kitaev model

Kitaev, Ann. Phys. 321, 2 (2006)

$R u^{3+} 4 d^{5}$ in honeycomb $\alpha-\mathrm{RuCl}_{3}$

Plumb, Clancy, Sandilands, Shankar, Hu, Burch, H-Y Kee \& Y-J Kim, PRB 90, 041112 (2014)

Honeycomb Kitaev model I

$$
H=\sum_{\langle i j\rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma}
$$

A 1. Introduce flux on each hexagon
$\hat{O}_{i}=S_{1}^{z} S_{2}^{y} S_{3}^{x} S_{4}^{z} S_{5}^{y} S_{6}^{x}$
2. $\left[H_{K}, \hat{O}_{i}\right]=0 \forall i$
3. $\left[\hat{O}_{i}, \hat{O}_{j}\right]=0 \forall i, j$
4. $\hat{O}_{i}{ }^{2}=1 \rightarrow O_{i}= \pm 1$

Flux on each hexagon: quantum number
System decomposes into 2^{Nh} sectors

(Nh=N/2)
B Algebra of bond operators $b_{\mathbf{r} \gamma}$:
bonds without common sites commute
bonds with common sites anti-commute

Honeycomb Kitaev model II

$$
H=\sum_{\langle i j\rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma}=\sum_{\mathbf{r} \gamma} b_{\mathbf{r} \gamma} \text { bond operators } b_{\mathbf{r} \gamma}
$$

B Algebra of bond operators $b_{\mathbf{r} \gamma}$:
bonds without common sites commute bonds with common sites anti-commute
related to algebra of majorana fermions:

$$
b_{\mathbf{r} \gamma}=2 i \eta_{\mathbf{r} \gamma} c_{\mathbf{r}} c_{\mathbf{r}+\mathbf{e}_{\gamma}}
$$

C 1. anticommutator $\left\{c_{i}, c_{j}\right\}=0 \forall i \neq j$
2. constant $\eta_{\mathbf{r} \gamma}= \pm 1$ depending on fluxes
3. $c_{i}^{\dagger}=c_{i}$ and $c_{i}^{2}=1 / 2$
4. groundstate is "flux free": $O_{i}=1 \forall i$
5. "real fermion" $f^{\dagger}=\left(c_{1}+i c_{2}\right) / 2$

Honeycomb Kitaev model III

$$
\begin{array}{r}
H_{\text {Kitaev }}=\sum_{\langle i j\rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}=\sum_{\mathbf{r} \gamma} K_{\gamma} b_{\mathbf{r} \gamma} \begin{array}{l}
\text { bond operators } b_{\mathbf{r} \gamma} \\
b_{\mathbf{r} \gamma}=2 i \eta_{\mathbf{r} \gamma} c_{\mathbf{r}} c_{\mathbf{r}+\mathbf{e}_{\gamma}}
\end{array} .8 \text {. }
\end{array}
$$

- majoranas on honeycomb lattice with nearest neighbor hopping
- static flux distribution
- "spins breaks up into
- spin excitation = flip 1
- ground state is spin-I
- spins \rightarrow spin statistics
"majorana graphene"
of hopping $\quad \eta_{\mathbf{r} \gamma}= \pm 1$
эnas"
fractionalization

- majoranas \rightarrow fermi statistics
- fluxes \rightarrow anyon statistics

Honeycomb Kitaev model IV

$$
H_{\text {Kitaev }}=\sum_{\langle i j\rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}
$$

- phase diagram

Abelian spinliquid phases

- in magnetic field $H_{K-B}=K \sum_{\langle i j\rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma}+B \sum_{i \gamma} S_{i}^{\gamma}$
gapped non-Abelian spin-liquid phase
(perturbative in B / K)

Quantum statistics of 2 particles in 3D

exchange operator of the two particles

wavefunction $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$
as $P_{12}^{2} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$
it follows that $P_{12} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= \pm \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$

$$
=e^{i \gamma} \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right) \quad \gamma=0, \pi
$$

Quantum statistics of 2 particles in 3D

exchange operator of the two a particles

bosons $\quad P_{12}=+1$ integer intrinsic angular momentum fermions $P_{12}=-1$ half integer intrinsic angular momentum
spin
statistics
theorem

Markus Fierz

Wolfgang Pauli

Quantum statistics of 2 particles in 3D

rotate one particle around the other one

= exchange them twice

after a rotation loop $R \psi(\mathbf{r})=e^{i \gamma} \psi(\mathbf{r})$ can $\gamma \neq 0, \pi$?
Not in 3D because all loops are topologically equivalent

Quantum statistics of 2 particles in 3D

after a rotation loop $R \psi(\mathbf{r})=e^{i \gamma} \psi(\mathbf{r})$ can $\gamma \neq 0, \pi$?
Not in 3D because all loops are topologically equivalent

Quantum statistics of 2 particles in 3D

after a rotation loop $R \psi(\mathbf{r})=e^{i \gamma} \psi(\mathbf{r})$ can $\gamma \neq 0, \pi$?
Not in 3D because all loops are topologically equivalent and can be contracted to a rotation around its own axis
For a similar topological reason one cannot tie shoelaces in 4D

But now a particle in quasi-2D

rotate charged particle around a magnetic flux

now there are

 topologically distinct loops

Aharanov-Bohm phase $\gamma=\frac{q \Phi}{\hbar}$ for enclosed flux Φ
For encircled elementary flux quantum $\Phi_{0}=\frac{h}{2 e} \rightarrow \gamma=\pi$
"Exchanging" q and Φ produces phase difference

Exchange two particles 2D

"exchange" corresponds to $1 / 2$ full rotation

$$
P_{12} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{i \gamma / 2} \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)
$$

Leinaas \& Myrheim Nuovo Cimento B. 37, 1 (1977)
statistical angle γ can take any value

```
\(\rightarrow\) anyon
```

"exchange" also $-1 / 2$ full rotation
$P_{12} \psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{-i \gamma / 2} \psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$
(permuted), anyons are braided

extremely robust

 topologically protected
Generalise to non-Abelian (noncommutative) anyons

Suppose the anyon has an internal degree of freedom

$$
\text { label it by } \alpha \text { so that } \psi_{\alpha}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)
$$ wavefunction in degenerate subspace

More than one state: store (quantum) information qubit
Braiding produces $\psi_{\alpha}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \rightarrow e^{-i \gamma T_{\alpha \beta}} \psi_{\beta}\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)$
where $T_{\alpha \beta}$ is a matrix
Braiding anyons rotates the qubit
By braiding anyons one can perform topologically protected non-commuting operations on qubits

How to construct anyons?

introduce charged particles with attached magnetic flux
Φ can take any value \rightarrow anyon
Unfortunately does not work for Maxwell's electromagnetic fields

Jackiw \& Redlich PRL 555 (1983)

Wilczek PRL 957 (1982)

Need emergent fluxes

= fluxes generated by the interactions between electrons
that act on the wavefunctions just like magnetic fluxes
Recipe: take interacting electrons, break them up in charged and fluxed particles, reassemble them

How to do that?

Fractional Quantum Hall

closing in but not there yet
Willett, Nayak, Shtengel, Pfeiffer \&
West, PRL 111, 186401 (2013)
von Keyserlingk, Simon \& Rosenow, PRL 115, 126807 (2015)

Kitaev model

$$
H_{\text {Kitaev }}=\sum_{\langle i j\rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}
$$

Topological spin liquids Kitaev Materials...
the race just started...

spins $1 / 2$ on honeycomb lattice
spatially anisotropic interactions

Magnetic nearest neighbor interactions in $\alpha-R u C I_{3}$

Quantum

 chemistry calculations$$
\mathcal{H}_{i, j}=J \tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j}+K \tilde{S}_{i}^{z} \tilde{S}_{j}^{z}+\sum_{\alpha \neq \beta} \Gamma_{\alpha \beta}\left(\tilde{S}_{i}^{\alpha} \tilde{S}_{j}^{\beta}+\tilde{S}_{i}^{\beta} \tilde{S}_{j}^{\alpha}\right)
$$

Structure	$\angle \mathrm{Ru}-\mathrm{Cl}-\mathrm{Ru}$	K	J	$\Gamma_{x y}$	$\Gamma_{z x}=-\Gamma_{y z}$
$C 2 / m[30]$	94°	-5.6	1.2	-1.2	-0.7
$C 2 / m[29]$					
Link $1(\times 2)$	94°	-5.3	1.2	-1.1	-0.7
Link $2(\times 1)$	93°	-4.8	-0.3	-1.5	-0.7
$P 3_{1} 12[28]$	89°	-1.2	-0.5	-1.0	-0.4

K large FM, J small AFM

Experimentally: zigzag order below ~8K

However INS: K AFM

Banerjee et al., Nat. Mater. 4604 (2016)
Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall \& Y-J Kim, PRB 91, 144420 (2015)
Yadav, Bogdanov, Katukuri, Nishimoto, JvdB \& Hozoi, Sci. Rep. 6, 37508 (2016)

Magnetic nearest neighbor interactions in $\alpha-\mathrm{RuCl}_{3}$

Exact

 diagonalization calculations$$
\mathcal{H}_{i, j}=J \tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j}+K \tilde{S}_{i}^{z} \tilde{S}_{j}^{z}+\sum_{\alpha \neq \beta} \Gamma_{\alpha \beta}\left(\tilde{S}_{i}^{\alpha} \tilde{S}_{j}^{\beta}+\tilde{S}_{i}^{\beta} \tilde{S}_{j}^{\alpha}\right)
$$

+ longer range Heisenberg J_{2} and J_{3}

$$
\begin{aligned}
& \text { zig-zag } \\
& \text { order } \\
& \text { driven by } \\
& \mathrm{J}_{2} \& \mathrm{~J}_{3}
\end{aligned}
$$

Summarizing

fractionalizing quantum particles, transmuting even their statistics, is fun
in theory new quantum liquid states can appear

in practise:

ruthenium trichloride: $|K / J| \sim 5$, K ferro, J antiferro

other residual interactions $O(J)$

magnetic field of $\sim 10 T$ stabelizes spin liquid?

