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Density-functional theory 

Calculates with pretty good accuracy: 
•  Energies 
•  Forces 
•  Relaxed structures 
•  Phonons 
•  Etc. 
Now implemented in “standard” packages including: 
•  ABINIT (Belgium; open source) 
•  Quantum Espresso (Italy; open source) 
•  VASP (Austria; licensed) 
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The Problem: Polarization 

Textbook illustration More realistic picture 



Ferroelectric PbTiO3
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P = dcell / Vcell ? 
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P = dcell / Vcell ? 

dcell ≈ 0 

dcell = ∫cell r ρ(r) d3r 
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The Problem: Polarization 

Conclusion: 

Knowledge of bulk charge density ρ(r) is not 
enough, even in principle, to determine P ! 

Heart of the problem:   r ρ(r)   is not a 
periodic function! 
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Need to go beyond ρ(r); 
use wavefunctions? 

 
   P ∝ Σnk 〈ψnk⎥r⎥ψnk〉 ? 

Theory of electric polarization 
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Review: Bloch’s Theorem 

Real space Reciprocal space 

BaTiO3 

a 

Enk 

k 
π/a 

0 eV 

-10 eV 

Unoccupied 

(CB) 
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(VB) 
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Review: Bloch’s Theorem 

Bloch wavefunction 

Enk 

k 
π/a 

0 eV 

-10 eV 

ψk(x) 

Ingredient: 
Atomic 

wavefunction 
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Review: Bloch’s Theorem 

Define the cell-periodic Bloch function uk(x): 
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Review: Bloch’s Theorem 

•  Reciprocal space is really periodic 

•  Brillouin zone can be regarded as a loop 

0 –π/a π/a 
k 

E 

k 

E 
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P ∝ Σnk 〈ψnk⎥r⎥ψnk〉 ?  No. 

Theory of electric polarization 

P ∝ Σnk 〈unk⎥i∇k⎥unk〉 ? 
 
Recall that in quantum mechanics, 

    p → -i h∇ 
So it is plausible that 

    r → i∇k 



ISOE, Cargèse, Corsica, 26 June 2019 

“Modern Theory of Polarization” (1993) 
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“Modern Theory of Polarization” (1993) 
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Simplify: 1 band, 1D 

This is a Berry phase! C

k 
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⏐uλ〉 

λ=0 
λ=1 

Tutorial on Berry phases 

φ is well-defined 
modulo 2π 

⇒  φ is a phase. 

Proof: 



⏐uλ〉 

λ=0 
λ=1 

φ is well-defined modulo 2π 

⇒  φ is a phase 

⇒ 

Proof: 
0 

2π β(λ) 

λ 

m=1 

m=0 

Let: 
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Tutorial on Berry phases 

φ is well-defined 
modulo 2π 
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Tutorial on Berry phases 

Famous example: Spinor in magnetic field 

E 

“up” along B 

“down” along B 

φ=Ω/2 

Ω = solid angle 
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Simplify: 1 band, 1D 

This is a Berry phase! C

k 
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Discretized formula in 3D 

where 
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Sample Application: Born Z* 

Paraelectric Ferroelectric 

+2 e   ? 

+4 e   ? 

– 2 e   ? 

– 2 e   ? 
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Summary: Theory of Polarization 

•  P cannot be expressed in terms of the bulk 
charge density 

•  P can be expressed in terms of the Berry 
phases of the Bloch bands 

•  Provides practical approach to calculation of P 

•  Alternate and equivalent view: 

  Wannier functions  
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Form wave-packet = “Wannier function” 

Tutorial on Wannier functions 
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Crystal in real space: 

Brillouin zone in reciprocal space: 

Tutorial on Wannier functions 

0 –π/a π/a 
k 
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Crystal in real space: 

Brillouin zone in reciprocal space: 

Unitary 
transformation 

R 

Tutorial on Wannier functions 

0 –π/a π/a 
k 
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Centers of Wannier functions: 

Tutorial on Wannier functions 
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Centers of Wannier functions: 

P 

as before !! 

Polarization ↔ Wannier centers 
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Energy vs. Polarization 

Paraelectric 

Ferroelectric 

BaTiO3 



ISOE, Cargèse, Corsica, 26 June 2019 

Cubic Tetragonal

Orthorhombic Rhombohedral

Structural phase transitions in BaTiO3 

P || (001) 
Tetrag 

P || (011) 
Orth 

P || (111) 
Rhomb 

P = 0 
Cubic 
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•  Define reduced set of structural degrees of freedom 
•  Write expansion of energy in these variables 
•  Obtain expansion coefficients 

–  From ab-initio calculations 
– No experimental input(*) 

•  Compute properties as a function of T: 
–  Structural phase transitions  
– Dielectric, piezoelectric properties 

               (*) We cheat a little: Lattice constant 

Effective Hamiltonian Theory 
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Phonons of cubic BaTiO3 (Ghosez thesis) 

Unstable phonon branches Acoustic branches 

Evaluate 
here 
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Local mode defined 
in terms of 

soft mode eigenvector 
in high-symmetry 
cubic structure 

{ui} 
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•  Amplitude u of soft mode 

•  Acoustic modes near q=0: 
strain η  

 

u 

3+3 coords/cell instead of 15 

η

Relevant low-energy degrees of freedom 
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Model system with local modes and strains 

{ui} {ηl}
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Model for the energy landscape 
in terms of the reduced set 

of degrees of freedom: 

Effective Hamiltonian 
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DFT calculations for database of distorted structures 

Obtain expansion parameters 
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•  Model has about 20 parameters 
•  Fit them from first-principles calculations 
•  Then use in statistical simulations 
-  Sample with Metropolis algorithm  
-  Typically 12x12x12 primitive cells 
-  Typically 105 Monte Carlo sweeps 
-  Obtain statistical averages 

  

Effective Hamiltonian Theory 
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(Zhong, Vanderbilt, and Rabe, 1995) 

Results for BaTiO3 
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Theory 
•  Tc’s off by ~100K 
•  But sequence correct 
•  Note that we miss 

thermal expansion 

Experiment 
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All-atom simulation approaches 
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Theory of Piezoelectricity 

Xifan 
Wu 

Don 
Hamann 

This is relatively easy: 
•  Apply small homogenous strain η 
•  Re-relax atomic coordinates 
•  Compute P before and after 
•  Obtain dP/dη ≈ ΔP/Δη  
Or, can be done by “linear response” 
•  No finite differences needed 
See ABINIT Anaddb package 



Theory of Flexoelectricity 

Cyrus Dreyer 

Polariza1on	response	can	be	
determined	from	current	

•  Calcula1on	of	the	1me-dependent	current		
provides	the	full	polariza1on	response	

J(r, t) =
@P(r, t)

@t
Polarization response to a 

strain gradient ! Max Stengel 

Andrea Schiaffino 

Jiawang Hong 



Apply strain gradient: 

P 6= 0

P = 0

Unstrained crystal: 



Possibility of novel 
devices 

U.K. Bhaskar, et al., Nat. Nano 11, 263 (2016) 

Affects properties of 
nanoscale devices 

G. Catalan, et al., Nat. Mater. 10, 963 (2011). H. Lu, et al., Science 336, 59 (2012) 

D. Lee, et al., Nano Lett. 12, 6436 (2012). 



Theory of flexoelectricity 

Sitting down to work on theory of flexoelectricity… 

SUBTLETY 

SUBTLETY 
SUBTLETY 

SUBTLETY 
SUBTLETY 



Flexoelectricity: 
History of our publications 



How to model a strain gradient in a bulk material? 

? 



Previous implementations for calculating 
µ required supercells 

J. Hong and D. Vanderbilt, 
Phys. Rev. B 88, 174107 (2013).

M. Stengel, 
Phys. Rev. B, 90, 201112, (2014).

Supercell calculations are 
computationally intensive.

We developed a method
to obtain μ from 

single unit cell calculations.



Long wavelength acoustic phonon 

•  Displacement of atom κ: 

•  Polarization response: 
u = ���q

e
iq·R

@P(r)

@���q


= Pq
e

iq·r

Cell periodic response 

phase 

 1/q 1/q 

phase 



Pq
x,x = P (q=0)

x,x � iqx
@Pq

x,x

@qx

�����
q=0

� q2x
2

@2Pq
x,x

@q2x

�����
q=0

+ · · ·

Long-wavelength expansion of  
cell-periodic polarization 

Born effective 
charge 

Piezoelectric 
response 

Flexoelectric 
response 

1/qx̂

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford, 1954)
R. M. Martin, Phys. Rev. B 5,1607 (1972)

M. Stengel, Phys. Rev. B 88, 174106 (2013



Summary of Approach 

•  Treat gradient as long-wavelength 
acoustic phonon 

•  Second order term in long-wavelength 
expansion of P 

Phonon  
wavevector 

µCI
↵�,�� = �1

2

@2Pq
↵,�

@q�@q�

�����
q=0
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Theory of flexoelectricity 

Sitting down to work on theory of flexoelectricity… 

SUBTLETY 

SUBTLETY 
SUBTLETY 

SUBTLETY 
SUBTLETY 



Additional subtleties 
•  Calculate current response to phonon 

•  Define current with nonlocal pseudopotentials 
•  Inhomogeneous deformations involve rotations 

–  Subtract off “diamagnetic” response 
–  Via “metric implementation” 

•  Include internal strain contributions 
•  Include surface contributions 

J(r, t) =
@P(r, t)

@t



Example: Frozen-ion µ for SrTiO3 

Sr 

O 
Ti 

(a) J. Hong and D. Vanderbilt, PRB 88, 174107 (2013) 
(b) M. Stengel, PRB, 90, 201112, (2014) 

µxx,xx µxx,yy µxy,xy

�0.87 (�0.9a,�0.88b) �0.84 (�0.83b) �0.08(�0.08b)
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Cubic oxides 

µxx,xx µxx,yy µxy,xy

SrTiO3 �0.87 (�0.9a,�0.88b) �0.84 (�0.83b) �0.08(�0.08b)
BaTiO3 �1.01 (�1.1a) �1.03 �0.07
SrZrO3 �0.61 �0.57 �0.05
PbTiO3 �1.35 (�1.5a) �1.35 �0.1
MgO �0.28 (�0.3a) �0.29 �0.07

(a) J. Hong and D. Vanderbilt, PRB 88, 174107 (2013) 
(b) M. Stengel, PRB, 90, 201112, (2014) 



Next: 
Materials physics of flexoelectricity 

•  Flexoelectricity in different materials classes? 
-  How to enhance flexoelectric coefficients? 
-  Or, how to suppress them? 

•  Disseminate our codes 

VectorStock 
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