Modern theory of ferroelectrics

David Vanderbilt Rutgers University

Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

Density-functional theory

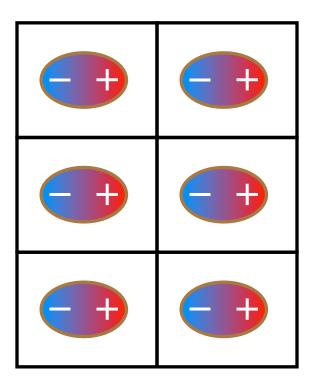
Calculates with pretty good accuracy:

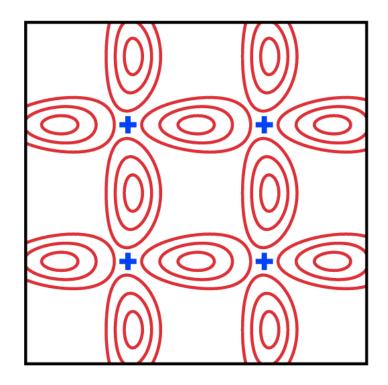
- Energies
- Forces
- Relaxed structures
- Phonons
- Etc.

Now implemented in "standard" packages including:

- ABINIT (Belgium; open source)
- Quantum Espresso (Italy; open source)
- VASP (Austria; licensed)

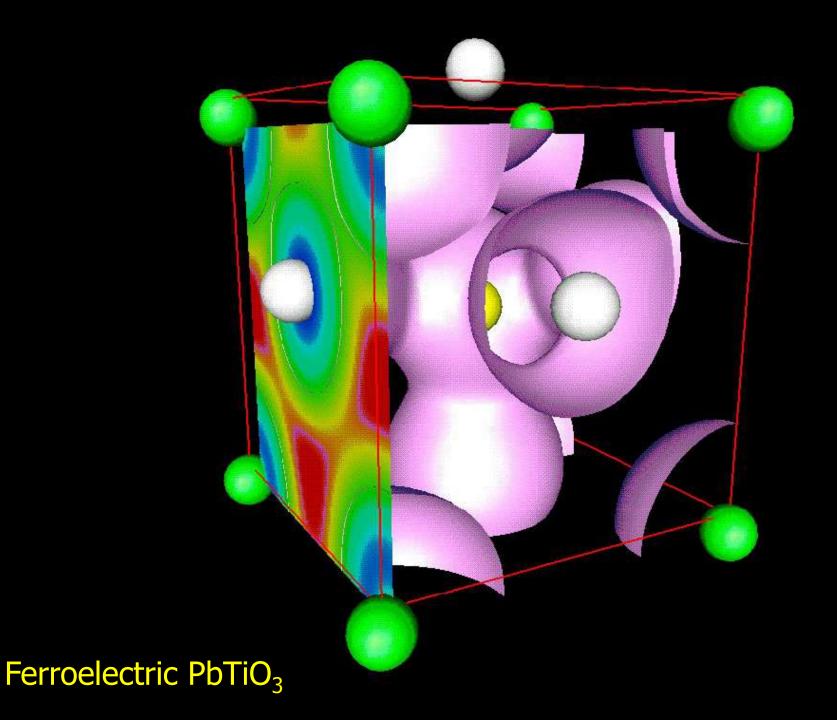
The Problem: Polarization



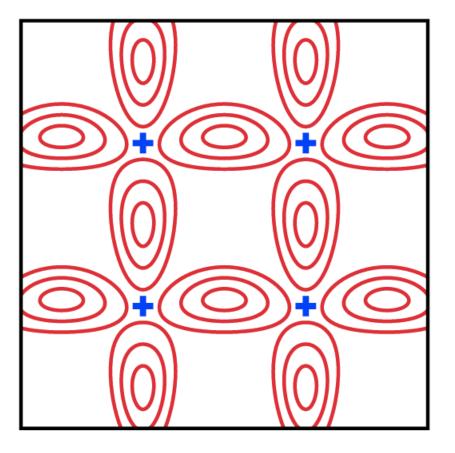


Textbook illustration

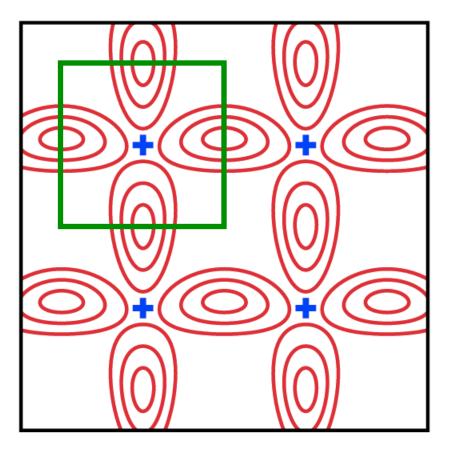
More realistic picture



 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?



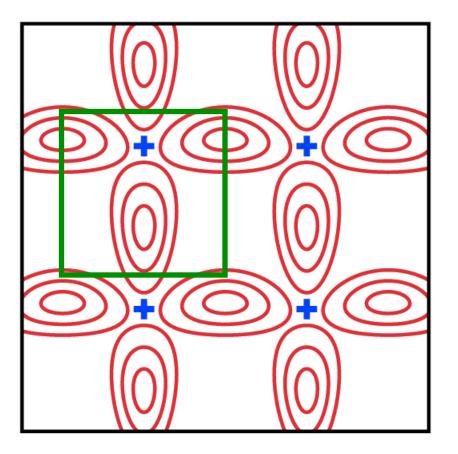
 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?



 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) \, \mathrm{d}\boldsymbol{3}r$

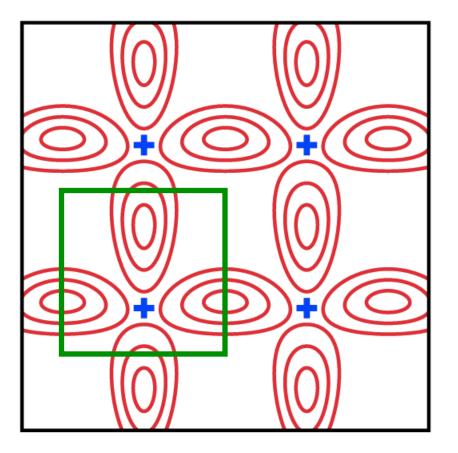
 $d_{cell} \approx 0$

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?



 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) \, \mathrm{d}\boldsymbol{3}r$

 $\boldsymbol{P} = \boldsymbol{d}_{cell} / V_{cell}$?



 $\boldsymbol{d}_{\text{cell}} = \int_{\text{cell}} \boldsymbol{r} \rho(\boldsymbol{r}) \, \mathrm{d}\boldsymbol{3}r$

The Problem: Polarization

Conclusion:

- Knowledge of bulk charge density $\rho(\mathbf{r})$ is not enough, even in principle, to determine **P**!
- Heart of the problem: $\mathbf{r} \rho(\mathbf{r})$ is not a periodic function!

Theory of electric polarization

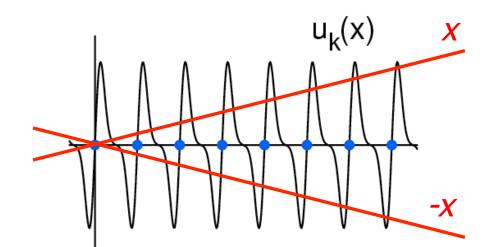
Need to go beyond $\rho(\mathbf{r})$; use wavefunctions?

$\boldsymbol{P} \propto \Sigma_{nk} \langle \psi_{nk} | \boldsymbol{r} | \psi_{nk} \rangle$?

Theory of electric polarization

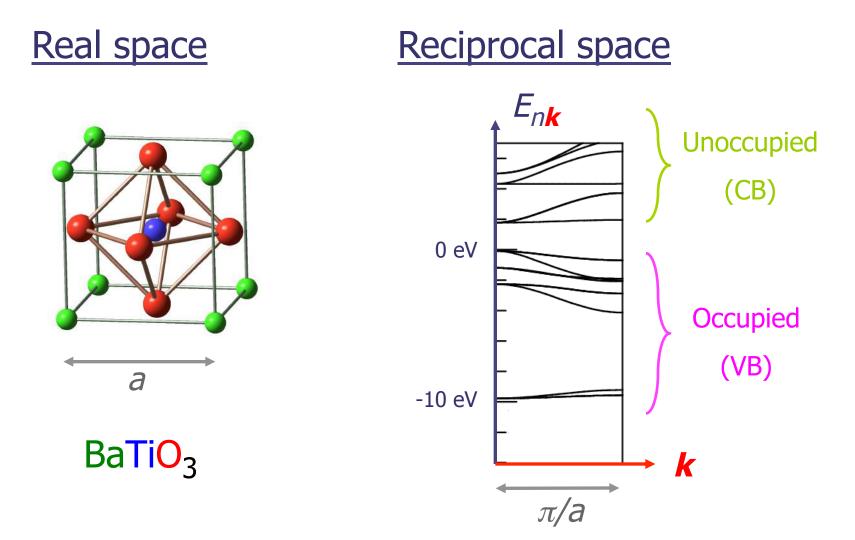
$$\mathbf{P} \propto \Sigma_{nk} \langle \psi_{nk} | \mathbf{r} | \psi_{nk} \rangle$$
?

$$\langle \psi_k | x | \psi_k \rangle = \int_{-\infty}^{\infty} x |u_k(x)|^2 dx$$

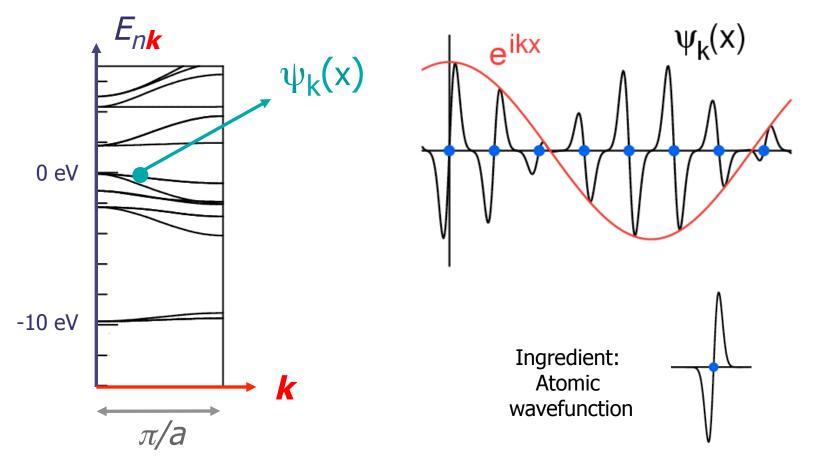


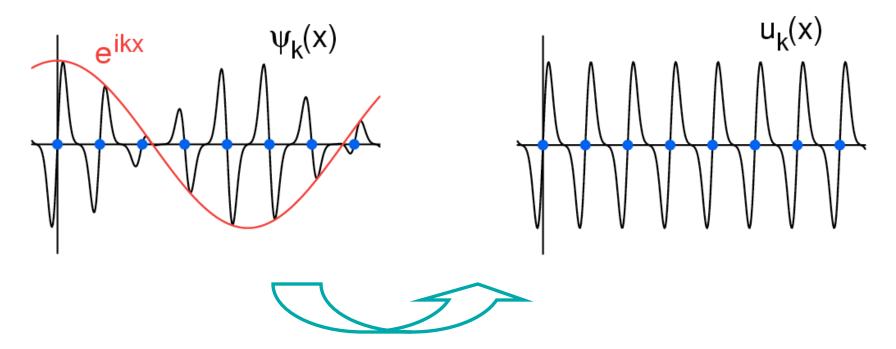
Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects



Bloch wavefunction

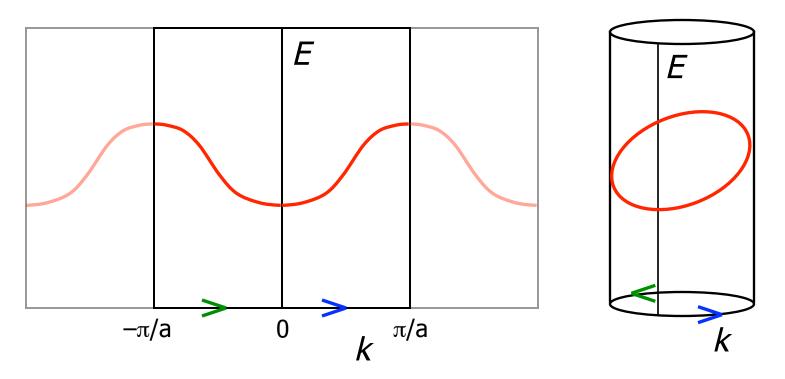




Define the cell-periodic Bloch function $u_k(x)$:

$$u_k(x) = e^{-ikx}\psi_k(x)$$

- Reciprocal space is really periodic
- Brillouin zone can be regarded as a loop



Theory of electric polarization

$$P \propto \Sigma_{nk} \langle \psi_{nk} | \mathbf{r} | \psi_{nk} \rangle$$
? No.

$$\boldsymbol{P} \propto \Sigma_{nk} \left\langle \boldsymbol{u}_{nk} \middle| i \boldsymbol{\nabla}_{\boldsymbol{k}} \middle| \boldsymbol{u}_{nk} \right\rangle ?$$

Recall that in quantum mechanics,

$$p \rightarrow -i h \nabla$$

So it is plausible that

$$r \rightarrow i V_k$$

"Modern Theory of Polarization" (1993)

Use the current

$$\frac{d\mathbf{P}}{dt} = \frac{1}{V} \int_{V} d^{3}r \,\mathbf{j(r)}$$

instead of the density

$$\mathbf{P} \;=\; \frac{1}{V} \; \int_{V} \, d^{3}r \; \mathbf{r} \; \rho(\mathbf{r})$$

since $\mathbf{j}(\mathbf{r})$ is periodic but $\mathbf{r} \rho(\mathbf{r})$ is not.

Resta, 1992:

$$\Delta \mathbf{P} = \int \left(\frac{d\mathbf{P}}{dt}\right) dt$$

"Modern Theory of Polarization" (1993)

Resta, 1992:
$$\Delta \mathbf{P} = \int \left(\frac{d\mathbf{P}}{dt}\right) dt$$

King-Smith and Vanderbilt, 1993:

 $\Delta \mathbf{P} = \mathbf{P}(t_2) - \mathbf{P}(t_1)$ where

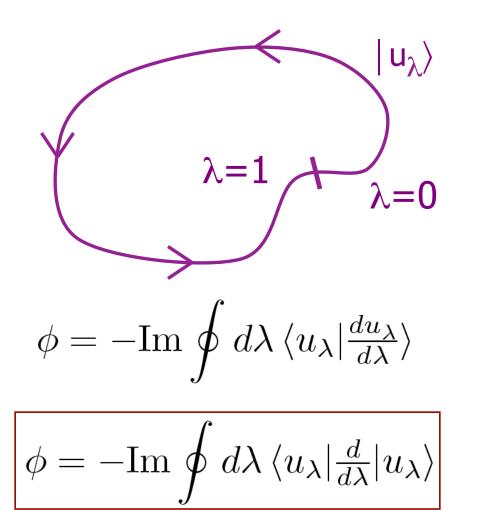
$$\mathbf{P} = \frac{ie}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

where
$$\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{nk}(\mathbf{r})$$

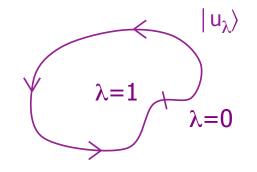
Simplify: 1 band, 1D

$$\mathbf{P} = \frac{-e}{2\pi} \int_{\mathrm{BZ}} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$)
$$\mathbf{P} = -e \frac{\phi}{2\pi} \quad \text{where} \quad \phi = i \oint_{C} dk \, \langle u_{\mathbf{k}} | \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
This is a Berry phase!

Tutorial on Berry phases

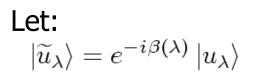


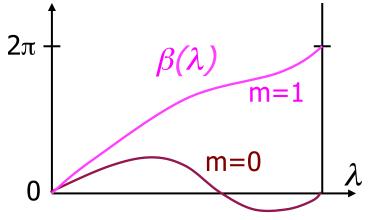
 ϕ is well-defined modulo 2π $\Rightarrow \phi$ is a phase. Proof:



 ϕ is well-defined modulo 2π $\Rightarrow \phi$ is a phase

$$\phi = - \mathrm{Im} \oint d\lambda \left< u_{\lambda} \right| \frac{d}{dk} \left| u_{\lambda} \right>$$

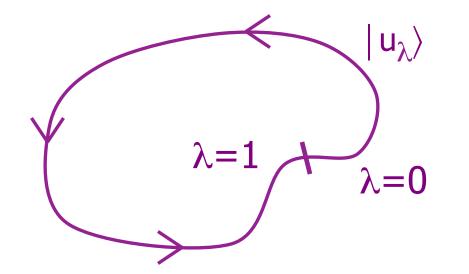




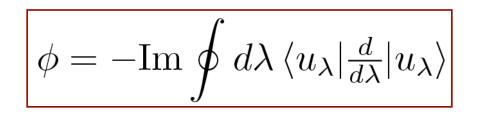
Proof:

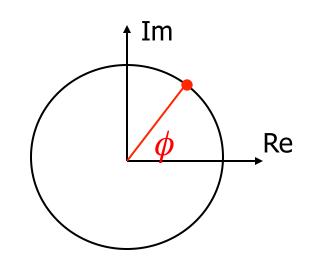
$$\begin{split} \widetilde{\phi} &= -\mathrm{Im} \oint d\lambda \left\langle \widetilde{u}_{\lambda} \right| \frac{d}{d\lambda} \left| \widetilde{u}_{\lambda} \right\rangle \\ &= -\mathrm{Im} \oint d\lambda \left\langle u_{\lambda} \right| e^{i\beta(\lambda)} \frac{d}{d\lambda} \left(e^{-i\beta(\lambda)} \left| u_{\lambda} \right\rangle \right) \\ &= -\mathrm{Im} \oint d\lambda \left\langle u_{\lambda} \right| \frac{d}{d\lambda} \left| u_{\lambda} \right\rangle + \oint d\lambda \left\langle u_{\lambda} \left| u_{\lambda} \right\rangle \left(\frac{d\beta}{d\lambda} \right) \end{split} \Rightarrow \begin{bmatrix} \widetilde{\phi} &= \phi + 2\pi m \\ \widetilde{\phi} &= \phi + 2\pi m \end{bmatrix}$$

Tutorial on Berry phases



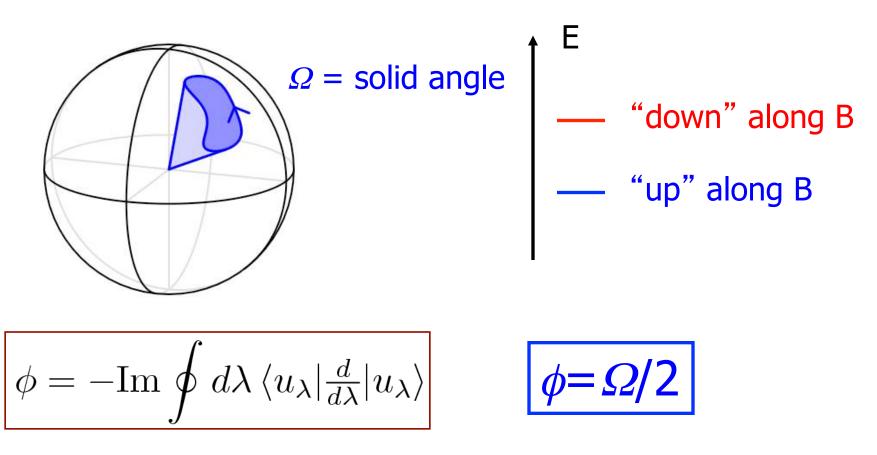
 ϕ is well-defined modulo 2π $\Rightarrow \phi$ is a phase.





Tutorial on Berry phases

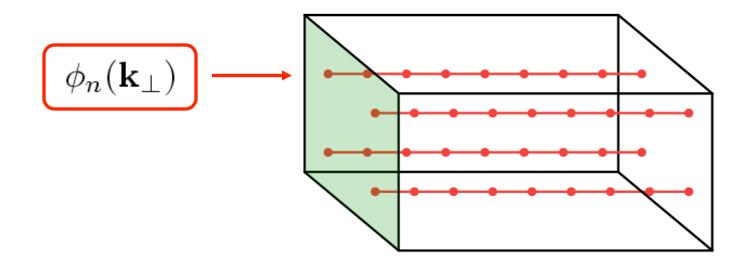
Famous example: Spinor in magnetic field



Simplify: 1 band, 1D

$$\mathbf{P} = \frac{-e}{2\pi} \int_{\mathrm{BZ}} dk \, \langle u_{\mathbf{k}} | i \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
Heuristically, $x \Leftrightarrow i \frac{d}{dk}$ (Compare $p \Leftrightarrow -i\hbar \frac{d}{dx}$)
$$\mathbf{P} = -e \frac{\phi}{2\pi} \quad \text{where} \quad \phi = i \oint_{C} dk \, \langle u_{\mathbf{k}} | \frac{d}{dk} | u_{\mathbf{k}} \rangle$$
This is a Berry phase!

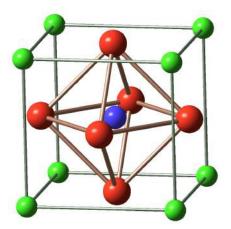
Discretized formula in 3D



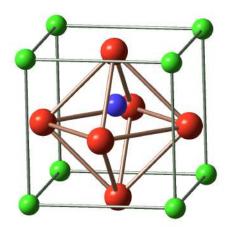
$$\mathbf{P}_n = \frac{1}{2\pi} \frac{e}{\Omega} \sum_j \phi_{n,j} \mathbf{R}_j \quad \text{where} \quad \phi_{n,j} = \frac{1}{N_{\mathbf{k}_\perp}} \sum_{\mathbf{k}_\perp} \phi_n(\mathbf{k}_\perp)$$

Sample Application: Born Z^*

 $Z_{j\alpha\beta}^* = \frac{dP_\alpha}{dR_{j\beta}} \simeq \frac{\Delta P_\alpha}{\Delta R_{j\beta}}$



Paraelectric



Ferroelectric

 $Z^*(Ba) = +2 e$?

- Z*(Ti) = +4 e ?
- $Z^*(O_I) = -2 e$?

 $Z^*(O_{II}) = -2 e$?

Summary: Theory of Polarization

- **P** cannot be expressed in terms of the bulk charge density
- **P** can be expressed in terms of the Berry phases of the Bloch bands
- Provides practical approach to calculation of ${\it P}$
- Alternate and equivalent view:

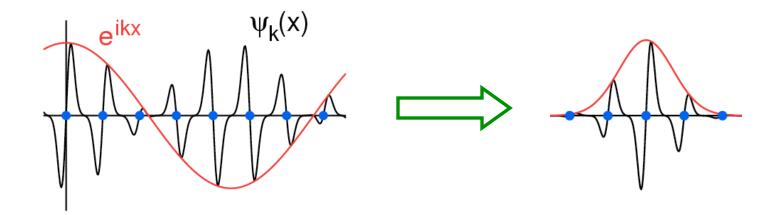
Wannier functions

Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

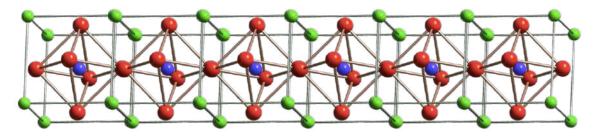
Choose Wannier functions as

$$w_n(\mathbf{r} - \mathbf{R}) = \int_{BZ} \psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d\mathbf{k}$$

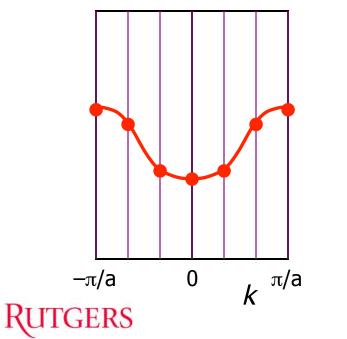


Form wave-packet = "Wannier function"

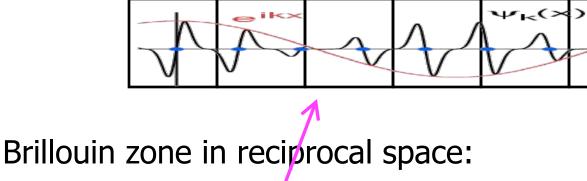
Crystal in real space:

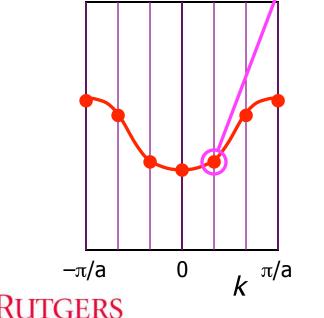


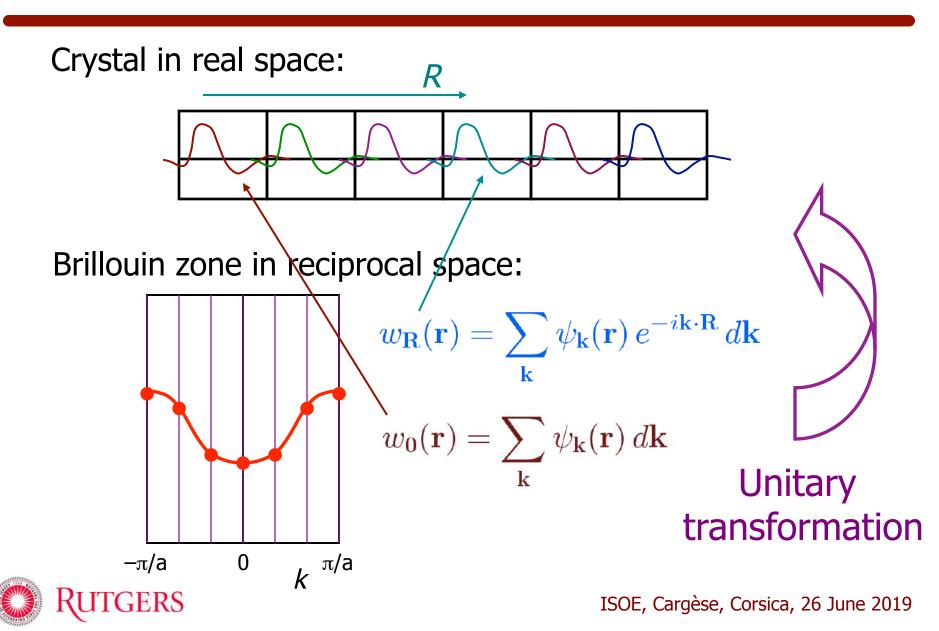
Brillouin zone in reciprocal space:



Crystal in real space:







Centers of Wannier functions:

$$\begin{split} w_{\mathbf{0}} \rangle &= \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} |\psi_{\mathbf{k}}\rangle \\ &= \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \; e^{i\mathbf{k}\cdot\mathbf{r}} |u_{\mathbf{k}}\rangle \end{split}$$

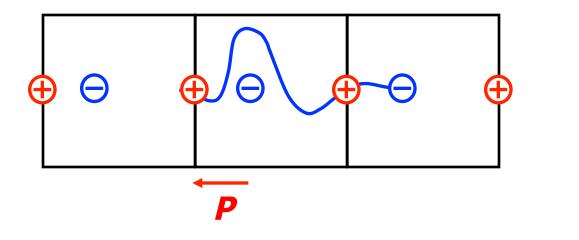
$$\mathbf{r} |w_{\mathbf{0}}\rangle = \frac{V}{(2\pi)^{3}} \int_{\mathrm{BZ}} d\mathbf{k} \left(-i\nabla_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \right) |u_{\mathbf{k}}\rangle$$

$$= i \frac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \; e^{i\mathbf{k}\cdot\mathbf{r}} \left(\nabla_{\mathbf{k}} \left| u_{\mathbf{k}} \right\rangle \right)$$

$$egin{aligned} &ig \langle w_{\mathbf{0}} \, | \, \mathbf{r} \, | \, w_{\mathbf{0}} ig
angle = i \, rac{V}{(2\pi)^3} \, \int_{\mathrm{BZ}} d\mathbf{k} \, ig \langle u_{\mathbf{k}} | \,
abla_{\mathbf{k}} \, | u_{\mathbf{k}} ig
angle \end{aligned}$$

Polarization ↔ Wannier centers

Centers of Wannier functions:

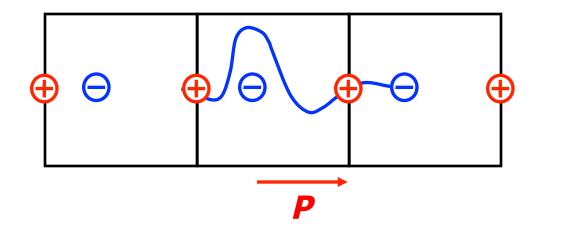


$$\mathbf{P} = \frac{i\epsilon}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

as before !!

Polarization ↔ Wannier centers

Centers of Wannier functions:



$$\mathbf{P} = \frac{i\epsilon}{(2\pi)^3} \sum_{n} \int_{\mathrm{BZ}} d^3k \left\langle u_{nk} \right| \nabla_{\mathbf{k}} \left| u_{nk} \right\rangle$$

as before !!

Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

References

REVIEWS OF MODERN PHYSICS

Macroscopic polarization in crystalline dielectrics: the geometric phase approach

Raffaele Resta Rev. Mod. Phys. **66**, 899 – Published 1 July 1994

182. D. Vanderbilt and R. Resta, "Quantum electrostatics of insulators: Polarization, Wannier functions, and electric fields," in *Conceptual foundations of materials* properties: A standard model for calculation of ground- and excited-state properties, S.G. Louie and M.L. Cohen, eds. (Elsevier, The Netherlands, 2006), pp. 139-163. (request article)

198. R. Resta and D. Vanderbilt, "Theory of Polarization: A Modern Approach," in {\it Physics of Ferroelectrics: a Modern Perspective}, ed. by K.M. Rabe, C.H. Ahn, and J.-M. Triscone (Springer-Verlag, 2007, Berlin), pp. 31-68. (local preprint)

Recently published

LOOK INSIDE

Berry Phases in Electronic Structure Theory

Electric Polarization, Orbital Magnetization and Topological Insulators

DAVID VANDERBILT

Berry Phases in Electronic Structure Theory Electric Polarization, Orbital Magnetization and Topological Insulators

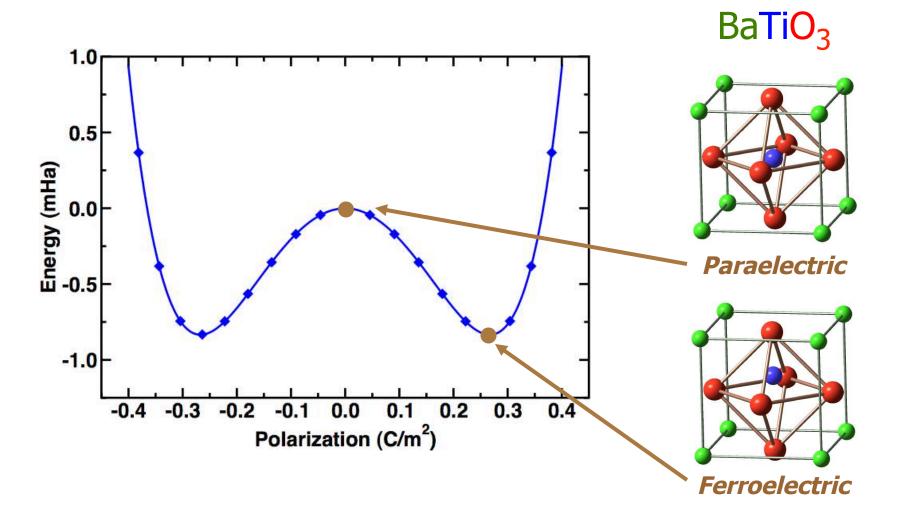
AUTHOR: David Vanderbilt, Rutgers University, New Jersey DATE PUBLISHED: December 2018 AVAILABILITY: In stock FORMAT: Hardback ISBN: 9781107157651

Rate & review

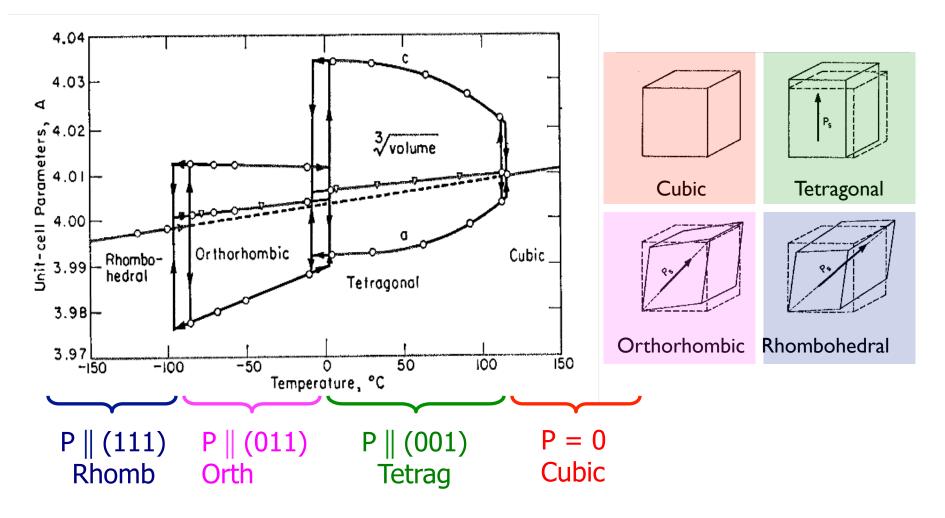
Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

Energy vs. Polarization



Structural phase transitions in BaTiO₃

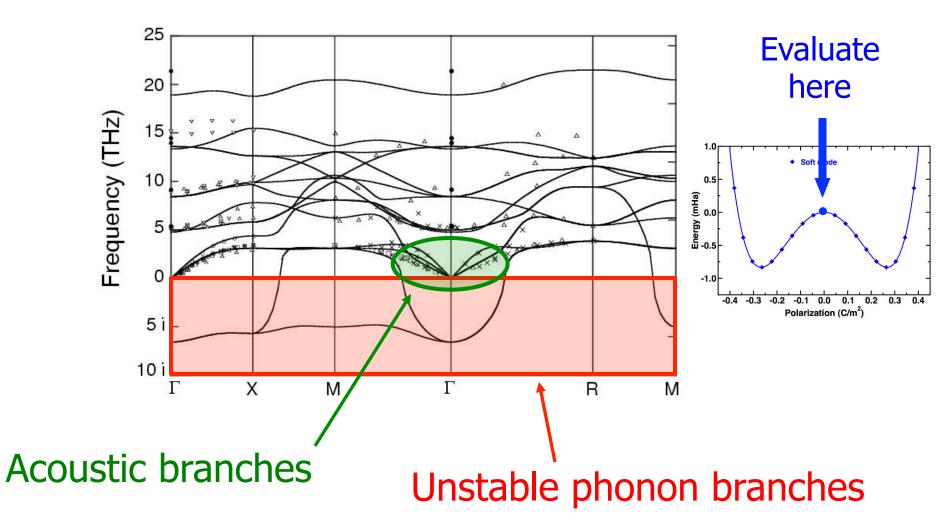


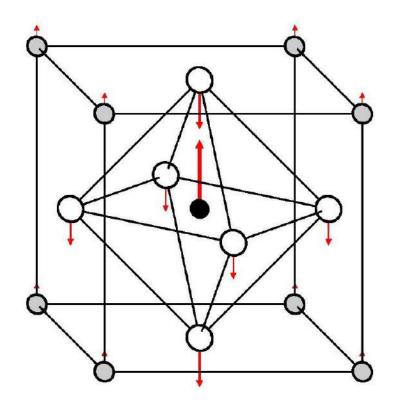
Effective Hamiltonian Theory

- Define reduced set of structural degrees of freedom
- Write expansion of energy in these variables
- Obtain expansion coefficients
 - From ab-initio calculations
 - No experimental input^(*)
- Compute properties as a function of T:
 - Structural phase transitions
 - Dielectric, piezoelectric properties

(*) We cheat a little: Lattice constant

Phonons of cubic BaTiO₃ (Ghosez thesis)





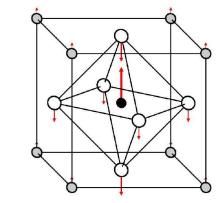
 $^{\{}U_i\}$

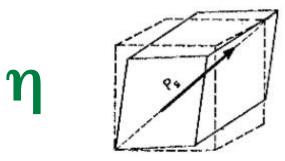
Local mode defined in terms of soft mode eigenvector in high-symmetry cubic structure

Relevant low-energy degrees of freedom

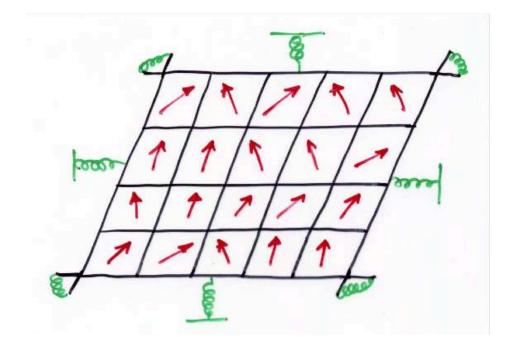
• Amplitude **u** of soft mode

 Acoustic modes near q=0: strain η





3+3 coords/cell instead of 15



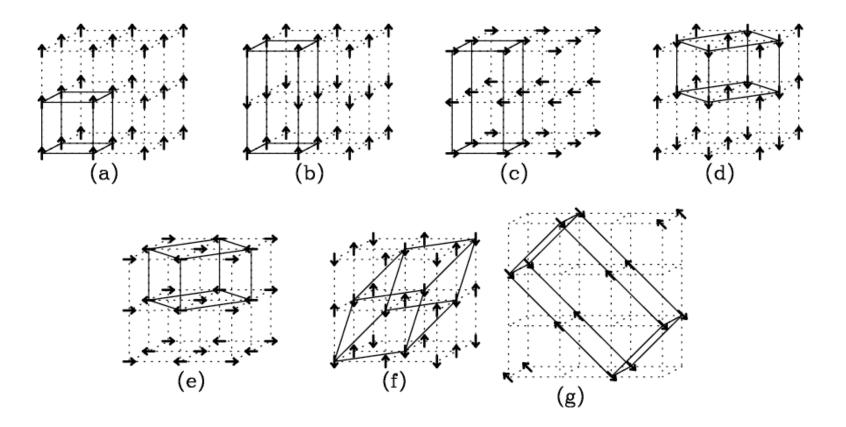
Model system with local modes and strains $\{u_i\}$ $\{\eta_i\}$

Effective Hamiltonian

Model for the energy landscape in terms of the reduced set of degrees of freedom:

$$E^{\text{tot}} = E^{\text{self}}(\{\mathbf{u}\}) + E^{\text{dpl}}(\{\mathbf{u}\}) + E^{\text{short}}(\{\mathbf{u}\}) + E^{\text{short}}(\{\mathbf{u}\}) + E^{\text{elas}}(\{\eta_l\}) + E^{\text{int}}(\{\mathbf{u}\},\{\eta_l\})$$

DFT calculations for database of distorted structures

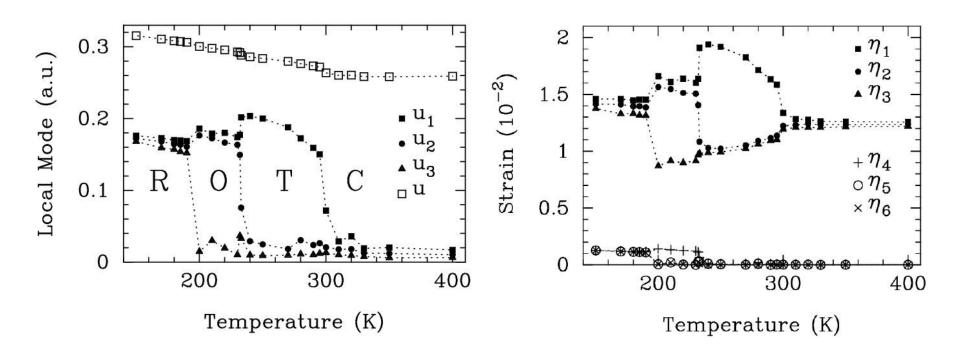


Obtain expansion parameters

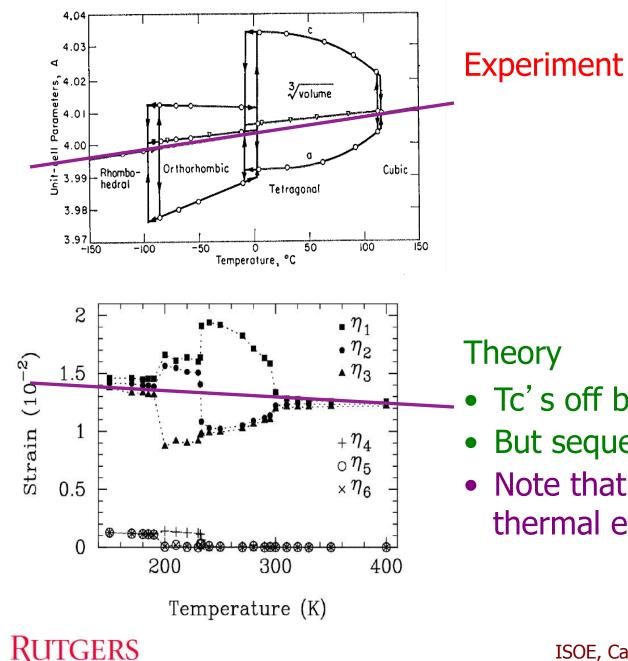
Effective Hamiltonian Theory

- Model has about 20 parameters
- Fit them from first-principles calculations
- Then use in statistical simulations
 - Sample with Metropolis algorithm
 - Typically 12x12x12 primitive cells
 - Typically 10⁵ Monte Carlo sweeps
 - Obtain statistical averages

Results for BaTiO₃



(Zhong, Vanderbilt, and Rabe, 1995)



- Tc's off by ~ 100 K
- But sequence correct
- Note that we miss thermal expansion

All-atom simulation approaches

Journal of Physics: Condensed Matter

PAPER

First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides

Jacek C Wojdeł¹, Patrick Hermet^{2,3}, Mathias P Ljungberg¹, Philippe Ghosez² and Jorge Íñiguez¹ Published 5 July 2013 • 2013 IOP Publishing Ltd Journal of Physics: Condensed Matter, Volume 25, Number 30

PHYSICAL REVIEW B

covering condensed matter and materials physics

Highlights Recent Accepted Authors Referees Search Pre

Reinterpretation of the bond-valence model with bond-order formalism: An improved bondvalence-based interatomic potential for PbTiO₃

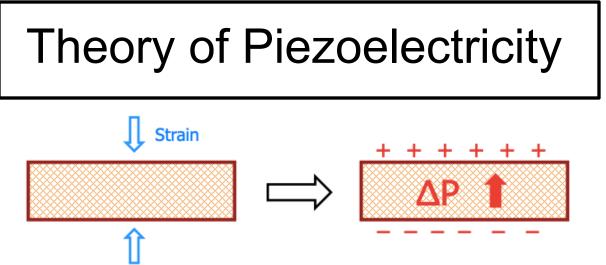
Shi Liu, Ilya Grinberg, Hiroyuki Takenaka, and Andrew M. Rappe Phys. Rev. B **88**, 104102 – Published 6 September 2013

Outline

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity
- Summary and prospects

Xifan Wu

Don Hamann



This is relatively easy:

- Apply small homogenous strain η
- Re-relax atomic coordinates
- Compute *P* before and after
- Obtain $dP/d\eta \approx \Delta P/\Delta \eta$

Or, can be done by "linear response"

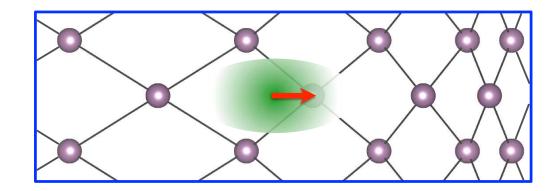
• No finite differences needed See ABINIT *Anaddb* package

X. Wu, D. Vanderbilt, and D.R. Hamann, "Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory," Phys. Rev. B 72, 035105 (2005).

Jiawang Hong

Cyrus Dreyer

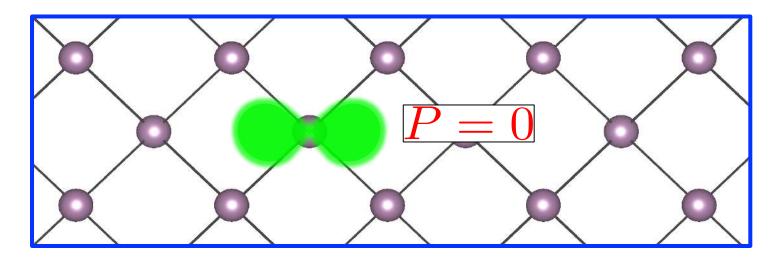
Max Stengel



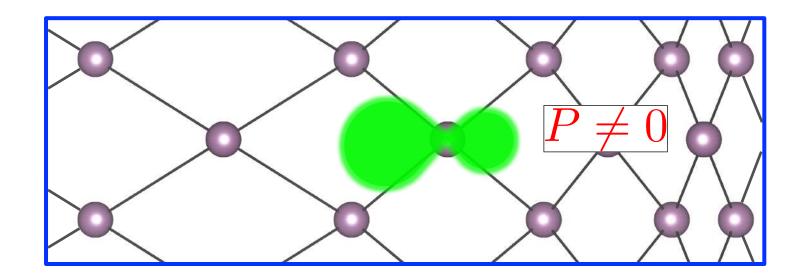
Polarization response to a strain gradient !

Andrea Schiaffino

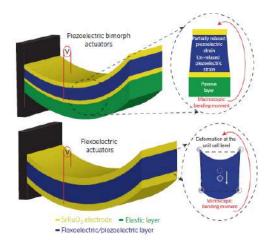
Unstrained crystal:



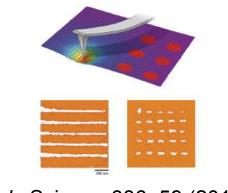
Apply strain gradient:



Possibility of novel devices

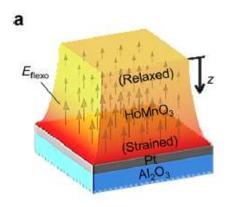


U.K. Bhaskar, et al., Nat. Nano 11, 263 (2016)

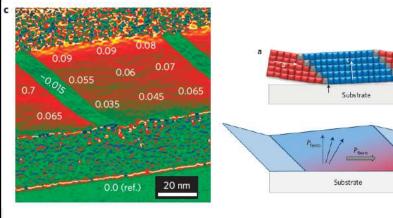


H. Lu, et al., Science 336, 59 (2012)

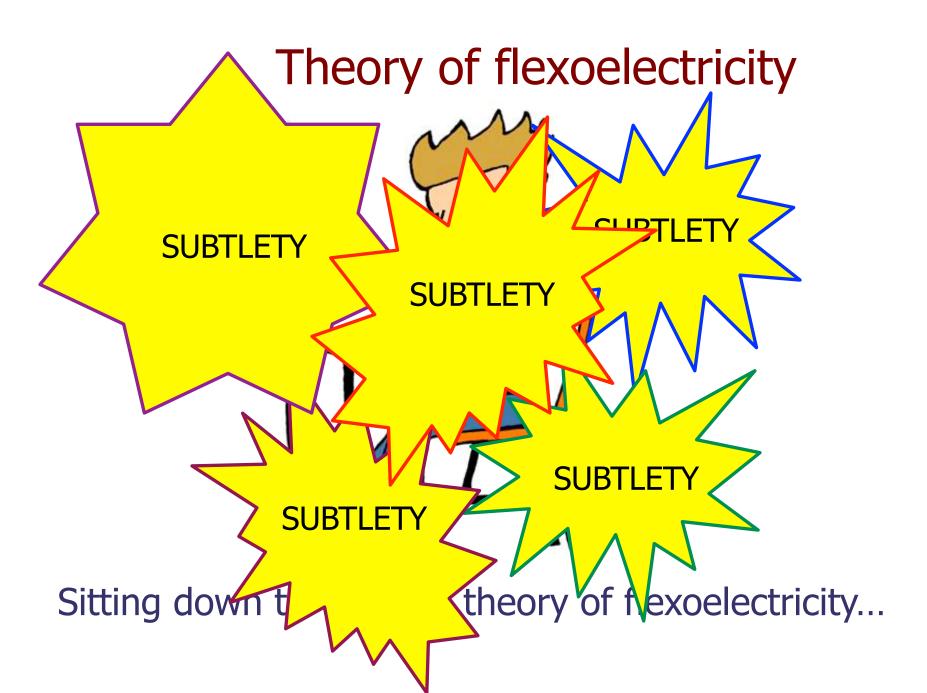
Affects properties of nanoscale devices



D. Lee, et al., Nano Lett. 12, 6436 (2012).



G. Catalan, et al., Nat. Mater. 10, 963 (2011).



Flexoelectricity: History of our publications

J. Hong and D. Vanderbilt, "First-principles theory of frozen-ion flexoelectricity," Phys. Rev. B 84, 180101 (2011). (*journal link*, *local copy*)

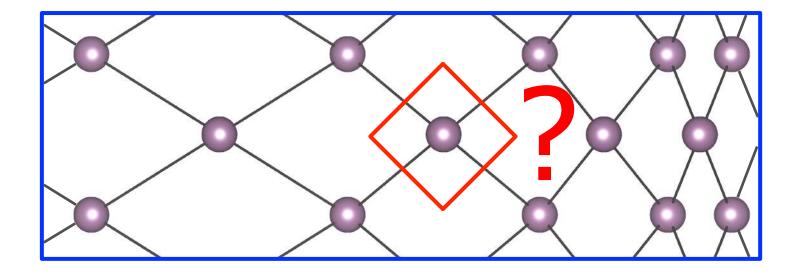
J. Hong and D. Vanderbilt, "First-principles theory and calculation of flexoelectricity," Phys. Rev. B 88, 174107 (2013). (*journal link*, *local copy*)

M. Stengel and D. Vanderbilt, "First-principles theory of flexoelectricity," in *Flexoelectricity in Solids: From Theory to Applications*, A.K. Tagantsev and P. Yudin, eds. (World Scientific, Singapore, 2016), Chapter 2, pp. 31-110. (*local preprint*)

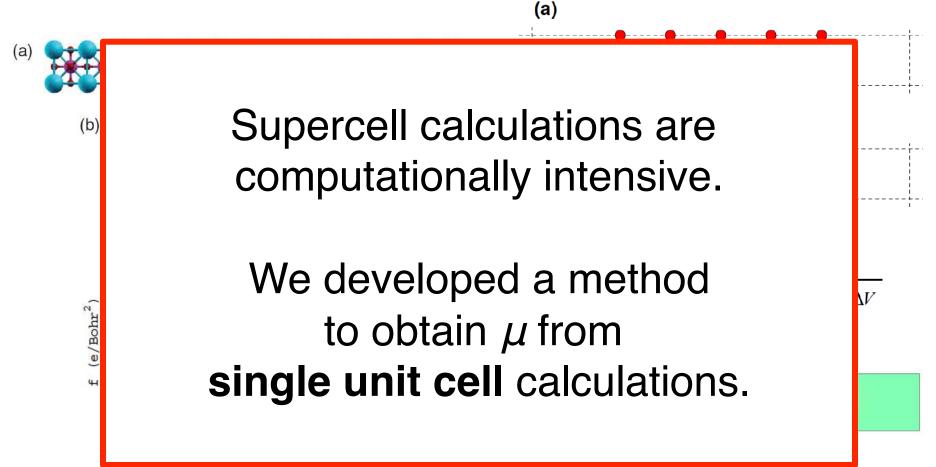
C. Dreyer, M. Stengel, and D. Vanderbilt, "Current-density implementation for calculating flexoelectric coefficients," Phys. Rev. B 98, 075153 (2018). (*journal link*, *local copy*)

A. Schiaffino, C.E. Dreyer, D. Vanderbilt, and M. Stengel, "Metric-wave approach to flexoelectricity within density-functional perturbation theory," Phys. Rev. B 99, 085107 (2019). (*journal link*, *local copy*)

How to model a strain gradient in a bulk material?



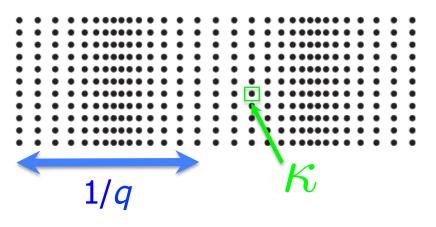
Previous implementations for calculating μ required supercells

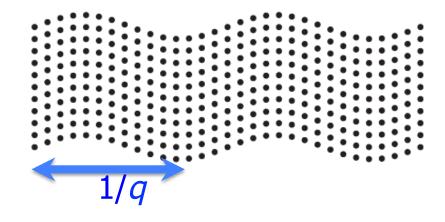


X (Bour)

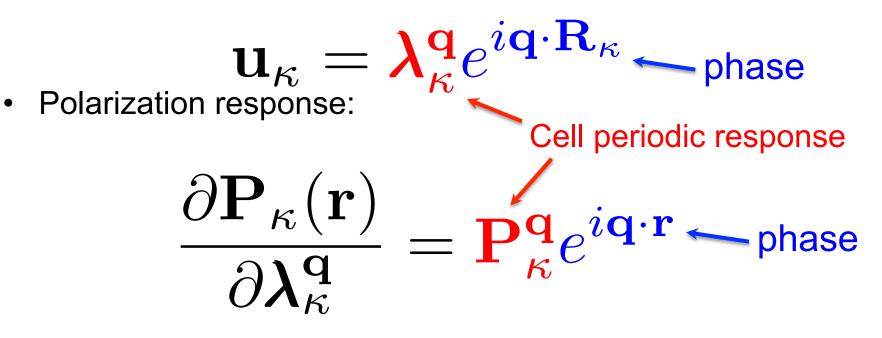
J. Hong and D. Vanderbilt, Phys. Rev. B **88**, 174107 (2013). M. Stengel, Phys. Rev. B, **90**, 201112, (2014).

Long wavelength acoustic phonon

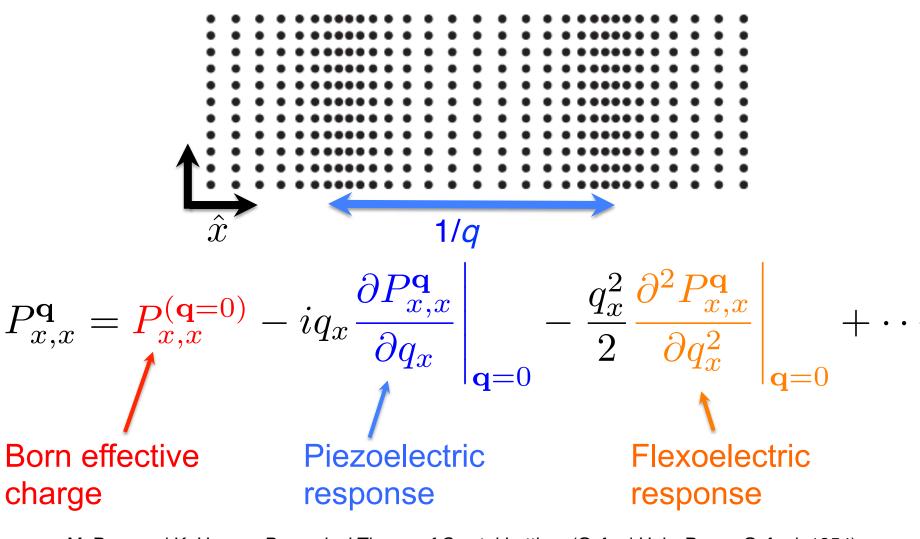




• Displacement of atom *k*:



Long-wavelength expansion of cell-periodic polarization

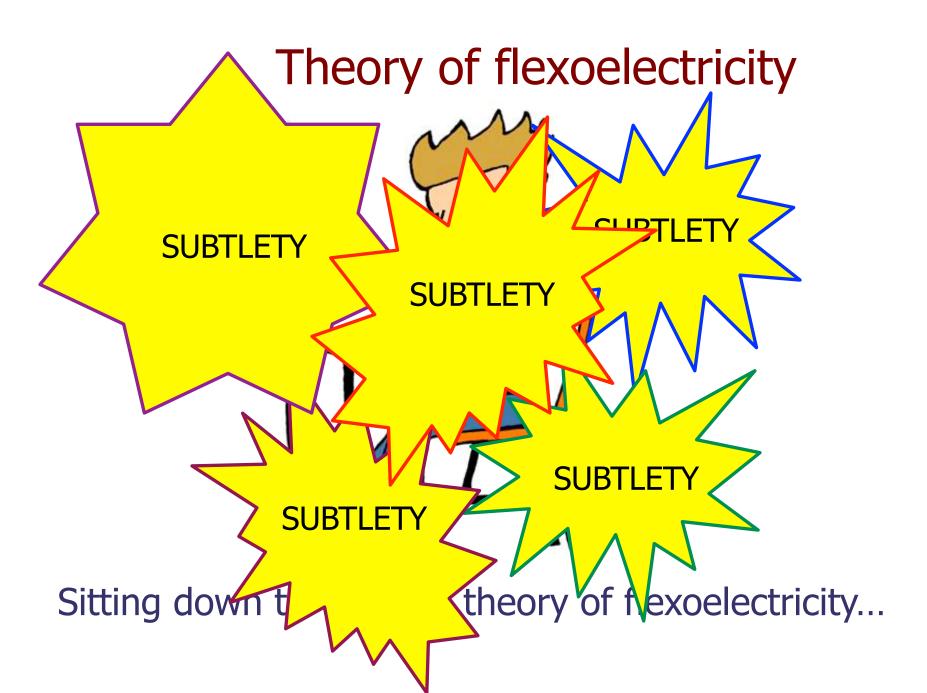


M. Born and K. Huang, *Dynamical Theory of Crystal Lattices* (Oxford Univ. Press, Oxford, 1954) R. M. Martin, Phys. Rev. B 5,1607 (1972) M. Stengel, Phys. Rev. B 88, 174106 (2013)

Summary of Approach

- Treat gradient as long-wavelength
 acoustic phonon
- Second order term in long-wavelength expansion of *P*

$$\mu^{\mathrm{CI}}_{\alpha\beta,\gamma\delta} = -\frac{1}{2} \frac{\partial^2 P^{\mathbf{q}}_{\alpha,\beta}}{\partial q_{\gamma} \partial q_{\delta}} \bigg|_{\mathbf{q}=0}$$
Phonon wavevector



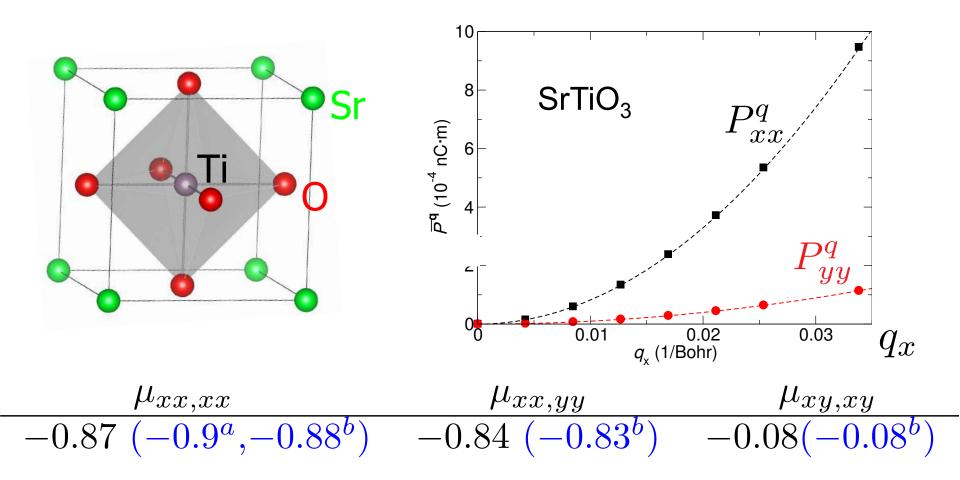
Additional subtleties

• Calculate *current* response to phonon

$$\mathbf{J}(\mathbf{r},t) = \frac{\partial \mathbf{P}(\mathbf{r},t)}{\partial t}$$

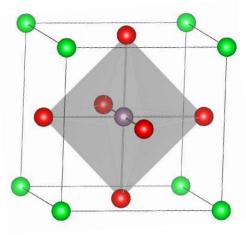
- Define current with *nonlocal pseudopotentials*
- Inhomogeneous deformations involve *rotations*
 - Subtract off *"diamagnetic"* response
 - Via "metric implementation"
- Include internal strain contributions
- Include surface contributions

Example: Frozen-ion μ for SrTiO₃



(a) J. Hong and D. Vanderbilt, PRB 88, 174107 (2013)(b) M. Stengel, PRB, 90, 201112, (2014)

Cubic oxides



	$\mu_{xx,xx}$	$\mu_{xx,yy}$	$\mu_{xy,xy}$
$SrTiO_3$	$-0.87 \ (-0.9^a, -0.88^b)$	$-0.84 \ (-0.83^b)$	$-0.08(-0.08^b)$
$BaTiO_3$	$-1.01 \ (-1.1^a)$	-1.03	-0.07
$SrZrO_3$	-0.61	-0.57	-0.05
$PbTiO_3$	$-1.35 \; (-1.5^a)$	-1.35	-0.1
MgO	$-0.28 (-0.3^{a})$	-0.29	-0.07

(a) J. Hong and D. Vanderbilt, PRB 88, 174107 (2013)(b) M. Stengel, PRB, 90, 201112, (2014)

Next: Materials physics of flexoelectricity

- Flexoelectricity in different materials classes?
 - How to enhance flexoelectric coefficients?
 - Or, how to suppress them?
- Disseminate our codes

Summary

- Modern theory of polarization
 - What is the problem?
 - Berry phase formulation
 - Wannier center formulation
- Effective Hamiltonian approach
- Theory of flexoelectricity

