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Disclaimer: This topicis arich one! There is not time cover all of it in detail, some great work is thus not
included here. No offense is meant, just a result of the time limits! For those new to the field, know there
is more beyond these slides to explore...
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Energies in Ferroelectrics

Erotar = Ep + Ep + Epy + Egraq + Eg

++++++++@++++

Gradient energy
controls how
polarization varies

spatially (E,,,)

The design challenge - Can we leverage the
competition between these energies to create novel
structures, states of matter, and emergent phenomena ‘
and function in ferroelectrics? )

Elastic energy from substrate can
drive domain reorientation (E)

DWs cost
energy (Epy)

B _________________________________________________________________________________________________________________________________
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Emergent Ferroelectric Phenomena

How can “next-generation” growth and epitaxy
enable emergent phenomena and function?

Film Orientation and
Elastic Frustration
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Beyond Binary & Neuromophic
Function = Multi-state Switching and
Stable Intermediate States

Superlattices and Artificial
Heterostructures

Novel Polarization Profiles & Function
-> Vortices, Phase Competition,
Chirality, Skyrmions
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Neuromorphic Function

Digital Computation vs. the Brain

» Modern computers = “0Os” and “1s” to complete
logic operations, store data, etc.

» Brain = does not use binary logic/address-able
memory, or perform binary arithmetic

* Information = represented as statistical
L e  approximations/estimations, not exact values

L

Arithmetic

i € |
Calculation eneralization

Fault Tolerance

* Brain is non-deterministic, cannot replay B
LU CIEUVA  instruction sequences error-free

Recognition

Neuron = electrochemical pulses transmitted Requirements for adaptive electronic
from adjacent neurons to alter the weight of components:

conjoining synapse

Multistate behavior e Sensitivity
, Threshold behavior e Fault tolerance o
(e _, fn«\hw Nonvolatility e Insensitivity to noise e
\,{ T

Low energy « Compatibility

Axon hillock Ayon _,.-———>

-\_,.q_ __;_, i

1/ s if-.:-?j; g~ How do we create these functions
erminals ~7 q{\ ° ° °
A in a single material?
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Emulating Neuromorphic Function

Neuromorphic Engineering: Develop solid-state materials that
can mimic neuron function to enable brain-like computing

« State-of-the-art: Adapt natural internal states including resistance,
polarization, magnetization,...
Phase-change Materials Ferroelectricity Ferromagnetism

L s 10ms = 25 ms
[ - 16 ms - 35 ms
L > 20ms - 45 ms
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Kuzum et al. Nano Lett. 12, 2179 (2012) Chanthbouala et al. Nature Mater. 11, 860 (2012)

-50-40-30-20~-10 O 10 20 30 40 S0
Channel | curren t, fey (MA)

* Focus on ferr oelectrics... Fukami et al. Nature Mater. 15, 535 (2016)
 Challenges: Dominated by stochastic processes = how do we achieve
deterministically controllable multi-states in ferroelectrics?
» Goal: Evolve beyond stochasticity and explore potential for tunable, multi-
state polarization via control of switching kinetics and elastic frustration
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Orientation & Domains: PbZr,,Ti, 3O,

. . _ . Volume fraction of
» Orientation provides a knob by which minority domains
we can control the domain structure of Line density of
materials domalr walls
» All samples possess 90° domain walls Orientation A(um?) ¢ (%)
—> controlled structures (001) 391 153
 Advantage of thin films = direct (101) 16.3 199
observation and quantification of (111) 48.9 133

domain structure features
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Exotic Low-/High-Field Effects

Stationary (Frozen) | Multi-Step Polarization '

Permittivity § Reversal
800 , —iK
700 | ﬁ_ﬁ_j_H_.Eii E ’ Xu et al., Nature Mater.
el 1% %25 L% 14,79 (2015)
& i IH 0 % 2
2 o) I 's.,?f?‘f@*'%.. =
E 400-_ i Wi *500411111 \\\ " %.L'qﬂ
€ 300} (101)
o R e L R S
2 20F -8 & o o 5 ® o1
100 + (001)
0 bt > 3 Ll "
10 10 10

Frequency (Hz)
Xu et al., Nature Commun. 5, 3120 (2014)

» Response of the volume of
the ferroelectric material
within the finite width of
the domain walls (non-
motional)

switching process

* (111) = Broad switching,
90° switching events that
match models

€aw = 1,500-19,000 Observation of multi-step

(for 1-10 nm) . 90° switching process >
-2 6-78x g, ' intermediate states?
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Sharp 180° b \;ﬂ
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Capacitor-based studies
suggest potential for
intermediate states...

Switched Polarization (uC/cm’)
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Probing the Switching Behavior

Repeatability

Endurance
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Switching Process Retention
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« (001) = Poor state selection, stability, repeatability, endurance = States unstable

« (111) = Good deterministic state selection, stability (<10% P loss over 8 hr.), repeatability
(< 5% variation), endurance = Robust, defined states which are stable
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Exploring the (111)-Oriented Films

* (111) films show: Deterministic access to precise & distinguishable states,
retention, repeatability, endurance to repeated modification...

Arbitrary State Access Spike-time-dependent Plasticity
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"I (111)-oriented films it is possible to achieve...
 Effects difficult to accomplish in classical bi-stable switching
* Deterministic, tunable multi-state polarizations and critical

functions required for potential neuromorphic applications
The question is: What enables this type of response?
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Manifold of Degenerate Structures

J. Wang, Z. Hong, L.-Q. Chen, Penn State

* (111) PZT = Pcan point in 6 directions 0 —
. . . . c N
* PFM = Poling results in multiple unique, but 2 o1 ¢2stie,  , —e——*——* -
. (0]
related ordered domain structures é Sormain Wall

. . . . V———-v— v —~VV—Y
« Phase-field modeling > Confirms creationof  goop oo 4 . ., -
varied domain structures g | e L
« Energies > All structures have nearly identical g -oaf ]
. . . - . Landau ]
energies = Manifold degeneracy of available 505 =——=—=—-s—=—2u .

domain structures 2 1 2 3 4 5 6

Domain Variant State
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Understanding the Switching Process

S.Liu (ARL) & A. Rappe (UPenn), X : ! At :
MD Simulations  High-field/Bi-polar switching > Coordinated
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Mechanism for Intermediate States

e . : Delay ti t
« Stroboscopic imaging of the domain T Do)

; . ! (4)
structure in a d@Pacitor after etching the to Lo
AT de|§a°'7sr°'?MnO3 SatternecI‘\gnotoresEt Patteridg

3

ISOE2019 | Cargése, France Xu et al. Nature Commun. 10, 1282 (2019) July 1,2019 | 13



Mechanism for Intermediate States
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Xuetal., Nature Mater. 14,79 (2015)

possible in this system

| * Prior work = two domain structure configurations are

* These configurations mediate multi-state function

Kinetically and elastically “frustrated” domain switching and
configurations in (111)-oriented films enables...
* Beyond binary function = Presence of 3 stable states, produces a |
huge number of configurational states

* Beyond stochasticity = Elastic constraints provide for “quantized” |
. switching and stability (no back-switching)

* Function commensurate with needs of neuromorphic effects
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Emergent Ferroelectric Phenomena

How can “next-generation” growth and epitaxy
enable emergent phenomena and function?

Film Orientation and
Elastic Frustration
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Beyond Binary & Neuromophic
Function = Multi-state Switching and
Stable Intermediate States

Superlattices and Artificial
Heterostructures

Novel Polarization Profiles & Function
-> Vortices, Phase Competition,
Chirality, Skyrmions
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Lessons from Magnetism

 Recall...Ferroic materials have a tendency to form domains as a means to reduce
the depolarization/demagnetization fields that occur at surfaces

» Uniform domains with aligned P/M are most common =2 Interest in potential for
more exotic, smoothly varying dipole topologies to form in both FE and FM

* Magnets...

 Vortex-like states are well documented =
» 1940s - Depending on the exchange
interaction and anisotropy energies,
different patterns are possible @ . 1
* Ring- or vortex-like = Exchange N ; d 7 b EAN  ERL
interactions dominate over anisotropy (@)~~~ T L Ty NV, ,'\1
 Flux-closure = Anisotropy energy - t\.\ L B N \/{;‘ e
dominates (b, ¢) 411% T T %) Yot
° These are common Iﬂ “SmaH” magnets Kittel, Rev Mod. Phys. 21,541 (1949): Das et al., APL Mater. 6, 100901 (2018)
* Experimental observations of flux- (2002) subert et . Evrophys Lot 63,132 (3003 Hertel et e R, .72
closure domains, vortices abound 0403 (2603 Nagat et Pye. Rev. 878, 180414 (20081
« Complex topological patterns (d, e, f) can
develop = Depends on relative strength of s a 013,

exchange/anisotropy/demagnetization energies
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Lessons from Magnetism

» Skyrmions = Topologically stable field configurations with particle-like properties
* |[n some cases, like spins point in all directions wrapping a sphere
 Special type of 2D magnetic vortex structures
« Skyrmions happen at the border between paramagnetism and long-range ordered
phase (things in competition)
S g 2N

a s

“Zo0” of Magnetic Order

* Numerous topological
spin textures in helical
magnet Feq sCoq 5Si

Monte Carlo...

(a) =Helical

(b) = Skyrmion

(c) = 3D pic of Skyrmion
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How about FerroELECTRIC Materials?

» Motivated by the observation of exotic magnetic structures, the early 2000s saw
the emergence of suggestions of similar effects in ferroelectrics...
» Early work focused on “confined” structures = Nanostructures
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A “zoo” for features were predicted = Evolution w/ size,

shape, material, and temperature; interactions possible o
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