

Exotic Polar States Rewriting What is Possible in Ferroelectrics

Lane W. Martin

Department of Materials Science & Engineering, University of California, Berkeley Materials Sciences Division, Lawrence Berkeley National Laboratory

Selected References

- N. D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591 (1979).
- M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectric and Related Materials, Oxford Univ. Press: Oxford (2004).
- R. E. Newnham, *Properties of Materials: Anisotropy, Symmetry, Structure*, 1st Ed., Oxford Univ. Press: Oxford (2005).
- J. M. Gregg, Exotic domain states in ferroelectrics: Searching for vortices and skyrmions. *Ferroelect.* **433**, 74-87 (2012).
- L. W. Martin, A. M. Rappe, Thin-film ferroelectric materials and their applications. *Nature Rev. Mater.* **2**, 16087 (2016).
- Y. Nahas *et al.*, Discovery of stable skyrmionic state in ferroelectric nanocomposites. *Nature Commun.* **6**, 8542 (2015).
- S. Das et al., Perspective: Emergent topologies in oxide superlattices. APL Mater. 6, 100901 (2018).

Disclaimer: This topic is a rich one! There is not time cover all of it in detail, some great work is thus not included here. No offense is meant, just a result of the time limits! For those new to the field, know there is more beyond these slides to explore...

July 1, 2019 | 2

Energies in Ferroelectrics

Gradient energy controls how polarization varies spatially (E_{Grad})

drives 18

Depolarization

The design challenge \rightarrow Can we leverage the competition between these energies to create novel structures, states of matter, and emergent phenomena and function in ferroelectrics?

Elastic energy from substrate can drive domain reorientation (E_F)

Emergent Ferroelectric Phenomena

How can "next-generation" growth and epitaxy enable emergent phenomena and function?

Film Orientation and Elastic Frustration

Beyond Binary & Neuromophic
Function → Multi-state Switching and
Stable Intermediate States

Superlattices and Artificial Heterostructures

Novel Polarization Profiles & Function

→ Vortices, Phase Competition,
Chirality, Skyrmions

ISOE2019 | Cargèse, France July 1, 2019 | 4

Neuromorphic Function

Arithmetic Calculation

Logic Calculation

Perfect Memory

Cell body

Nucleus

Digital Computation vs. the Brain

 Modern computers → "Os" and "1s" to complete logic operations, store data, etc.

 Brain → does not use binary logic/address-able memory, or perform binary arithmetic

 Information → represented as statistical approximations/estimations, not exact values

• Brain is non-deterministic, cannot replay instruction sequences error-free

Generalization

Fault Tolerance

Pattern Recognition

Neuron → electrochemical pulses transmitted from adjacent neurons to alter the weight of conjoining *synapse*

Requirements for adaptive electronic components:

Multistate behavior • Sensitivity •

Threshold behavior • Fault tolerance •

Nonvolatility • Insensitivity to noise •

Emulating Neuromorphic Function

Neuromorphic Engineering: Develop solid-state materials that can mimic neuron function to enable brain-like computing

• State-of-the-art: Adapt natural internal states including resistance, polarization, magnetization,...

Phase-change Materials

Ferroelectricity

Chanthbouala et al. Nature Mater. 11, 860 (2012)

Ferromagnetism

Fukami et al. Nature Mater. 15, 535 (2016)

• Focus on ferroelectrics...

Kuzum et al. Nano Lett. 12, 2179 (2012)

- Challenges: Dominated by stochastic processes → how do we achieve deterministically controllable multi-states in ferroelectrics?
- Goal: Evolve beyond stochasticity and explore potential for tunable, multistate polarization via control of switching kinetics and elastic frustration

ISOE2019 | Cargèse, France July 1, 2019 | 6

Orientation & Domains: PbZr_{0.2}Ti_{0.8}O₃

- Orientation provides a knob by which we can control the domain structure of materials
- All samples possess 90° domain walls
 → controlled structures
- Advantage of thin films → direct observation and quantification of domain structure features

Volume fraction of minority domains

Line density of domain walls

Orientation	λ (μ m ⁻¹)	φ (%)
(001)	8.91	15.3
(101)	16.3	19.9
(111)	48.9	33.3

Exotic Low-/High-Field Effects

Xu et al., Nature Commun. 5, 3120 (2014)

 Response of the volume of the ferroelectric material within the finite width of the domain walls (nonmotional)

> $\varepsilon_{dw} \approx 1,500-19,000$ (for 1-10 nm) $\rightarrow 6-78 \times \varepsilon_b$

Multi-Step Polarization Reversal

Sharp 180° switching process

(111) → Broad switching,
 90° switching events that match models

Observation of multi-step 90° switching process → intermediate states?

Capacitor-based studies suggest potential for intermediate states...

Probing the Switching Behavior

- (001) → Poor state selection, stability, repeatability, endurance → States unstable
- (111) → Good deterministic state selection, stability (<10% P loss over 8 hr.), repeatability (< 5% variation), endurance → Robust, defined states which are stable

Exploring the (111)-Oriented Films

 (111) films show: Deterministic access to precise & distinguishable states, retention, repeatability, endurance to repeated modification...

In (111)-oriented films it is possible to achieve...

- Effects difficult to accomplish in classical bi-stable switching
- Deterministic, tunable multi-state polarizations and critical functions required for potential neuromorphic applications

The question is: What enables this type of response?

Manifold of Degenerate Structures

Phase-field simulations

- (111) PZT \rightarrow P can point in 6 directions
- PFM → Poling results in multiple unique, but related ordered domain structures
- Phase-field modeling → Confirms creation of varied domain structures
- Energies → All structures have nearly identical energies → Manifold degeneracy of available domain structures

J. Wang, Z. Hong, L.-Q. Chen, Penn State

Understanding the Switching Process

- High-field/Bi-polar switching → Coordinated
 90° switching events; domains unchanged
- Low-field/multi-state switching → Two 90° switching events, intermed. state w/ new configuration (half ↑/↓), fraction of the ↓-poled band is reduced with further E
- Take home → 90° switching favored, two kinetically-distinct pathways, competition of which gives multi-states

Mechanism for Intermediate States

Mechanism for Intermediate States

Xu et al., Nature Mater. 14, 79 (2015)

- Prior work → two domain structure configurations are possible in this system
- These configurations mediate multi-state function

Kinetically and elastically "frustrated" domain switching and configurations in (111)-oriented films enables...

- Beyond binary function → Presence of 3 stable states, produces a huge number of configurational states
- Beyond stochasticity → Elastic constraints provide for "quantized" switching and stability (no back-switching)
- Function commensurate with needs of neuromorphic effects

Emergent Ferroelectric Phenomena

How can "next-generation" growth and epitaxy enable emergent phenomena and function?

Film Orientation and Elastic Frustration

Beyond Binary & Neuromophic
Function → Multi-state Switching and
Stable Intermediate States

Superlattices and Artificial Heterostructures

Novel Polarization Profiles & Function

→ Vortices, Phase Competition,
Chirality, Skyrmions

Lessons from Magnetism

- Recall...Ferroic materials have a tendency to form domains as a means to reduce the depolarization/demagnetization fields that occur at surfaces
- Uniform domains with aligned P/M are most common → Interest in potential for more exotic, smoothly varying dipole topologies to form in both FE and FM
- Magnets...
 - Vortex-like states are well documented
 - 1940s → Depending on the exchange interaction and anisotropy energies, different patterns are possible
 - Ring- or vortex-like → Exchange interactions dominate over anisotropy (a)
 - Flux-closure → Anisotropy energy dominates (b, c)
 - These are common in "small" magnets
 - Experimental observations of fluxclosure domains, vortices abound
 - Complex topological patterns (d, e, f) can develop → Depends on relative strength of exchange/anisotropy/demagnetization energies

Kittel, Rev Mod. Phys. 21, 541 (1949); Das et al., APL Mater. 6, 100901 (2018)

Gomez et al., J. Appl. Phys. **85**, 6163 (1999); Pulwey et al., J. Appl. Phys. **91**, 7995 (2002); Jubert et al., Europhys. Lett. **63**, 132 (2003); Hertel et al., Phys. Rev. B **72**, 214409 (2005); Shinjo et al., Science **289**, 930 (2000); Park et al., Phys. Rev. B **67**, 020403 (2003); Nagai et al., Phys. Rev. B **78**, 180414 (2008)

Mermin, Rev. Mod. Phys. **51**, 591 (1979) Gregg, Ferroelectrics **433**, 74 (2012)

Lessons from Magnetism

- Skyrmions -> Topologically stable field configurations with particle-like properties
 - In some cases, like spins point in all directions wrapping a sphere
- Special type of 2D magnetic vortex structures
- Skyrmions happen at the border between paramagnetism and long-range ordered phase (things in competition)

"Zoo" of Magnetic Order

- Numerous topological spin textures in helical magnet Fe_{0.5}Co_{0.5}Si Monte Carlo...
- (a) = Helical
- (b) = Skyrmion
- (c) = 3D pic of Skyrmion

Experimental

- (d) = Helical
- (e) = Skyrmion
- (f) = Skyrmion

How about FerroELECTRIC Materials?

- Motivated by the observation of exotic magnetic structures, the early 2000s saw the emergence of suggestions of similar effects in ferroelectrics...
- Early work focused on "confined" structures → Nanostructures

Ab initio studies...

- BaTiO₃ "quantum dots" and "wires" → ferroelectric with surrounding non-ferroelectric environment
- PbZr_{1-x}Ti_xO₃ nanoscale disks and rods → smoothly rotating structures, "toroidal" moment forming

A "zoo" for features were predicted \rightarrow Evolution w/ size, shape, material, and temperature; interactions possible

