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GROUP INTRODUCTION

* Organics, hybrnd
= Interfaces/surf.
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FIRST-PRINCIPLES
CALCULATIONS: BASICS

Density functional theory
Main theorems
Why are they useful for multiferroics?
Where do they fail?
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WHAT ARE FIRST-PRINCIPLES USEFUL FOR?

MACRO < MICRO: Connect properties
with atomic structure

MODELLING AND UNDERSTANDING: Sort out
microscopic mechanisms and physical
models.

COMPUTER-EXPT: Ask “what if” questions.

MATERIALS DESIGN: Screen ideas for
new/modified materials

THEORY VS EXPERIMENT: Interpret
expernmental data, compare spectra, etc

» ERRORS... Analyze failures. Ask: Are the approximations appropriate? Can the models
address the complexity of the system#? Is the theory appropriate for the key properties?

@ : Sivia Picozi  CNRS - Intl School on Oxide Electronics  ISOE 2019




DFT: BASICS

The basic quantity is not the many-body wave-function but
the electronic density n(r)

Hohenberg-Kohn theorem (19464)

« All properties of the many-body system
are determined by the ground state

density ngs(r)

A
Ve

¥t

» Each property is a functional of the Lo W
ground state density ngs(r) which is :
written as f [ng] One to DHE\

* |n particular, the energy is: nedr

E[l"l{l']'] s F[I"I[r” * jve:f.’r l"l{l'} dr - Tﬂ * uuu+ W&x’r l"l{f} drz E[nGS{rH

and satisfies a vanational prnciple




DFT: BASICS
*«Kohn-Sham equations (19465)

Kohn-Sham Auxiliary system:
b Non-interacting
fictitious particles +

: effective potential
Interacting electrons + ke

External potential

The ground state density is required fo be the same as the
exact density

Minimization of E leads to one-particle Kohn-Sham equations
for independent particles (soluble):

F12ViI+VAn @] ] v = & w




DFT: BASICS

*Kohn-Sham equations (1965)
{-1/72V2+Veuln (] }wi = & w

VREER V[N (r)] = Ve(r) + Vi(r) + Vie[n(n)]

*Vilr) is the nuclei (external) potential

is the Hartree potential

is the (unknown) exchange-correlation
potential
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DFT: BASICS

 Approximations to the functional E,.

e Local Density Approximation - LDA

% Assume the functional is the same as a model
problem -the homogeneous eleciron gas

% E. has been calculated as a function of
density using quantum Monte Carlo methods
(Ceperley & Alder)

* Gradient approximations - GGA

% Various theoretical improvements for electron
density that varies in space
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Self-Consistent Kohn-Sham Equations

OPERATIVELY...

Structure, types of atoms,
guess for input charge

Solve KS Eqs.

New Density and Potential

Self-consistent?

Qutput:

- Total energy, force, ....
— Eigenvalues




THE GOOD AND THE BAD OF DFT FOR COMPLEX OXIDES

How to
approach

BUT... Vy(r) is approximated
“Standard” local density approximation (LDA)
desighed for a homogeneous electron gas ....

*Beyond-LDA methods:
- LDA+U attempts to incorporate Coulomb repulsions (U)

- Hybrid functionals (mix of “exact-exchange” and LDA)

* Hamiltonian modelling:

Extract essential interaction parameters from LDA and
construct a model , but also provide a fully
independent approach to test the results...

Silvia Picozzi CNRS - Intl School on Oxide Electronics  ISOE 2019




WHAT CAN WE GET OUT OF THE COMPUTER?

Spin-DFT Electronic structure (DOS, bands, ...}, magnetism
(moments, GS spin configuration, ...)
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MULTIFERROICS: EXAMPLES
FROM FIRST-PRINCIPLES

* Introduction and Classification
* Lone-pair driven

* (Structurally) Improper FE

» (Electronicadlly) Improper FE

Silvia Picozzi CNRS - Intl School on Oxide Electronics  ISOE 2019




MAGNETOELECTRICS MULTIFERROICS:
WHAT ARE THEY?

N.A. Spaldin
and M. Fiebig,
Science
309, 391 [2005)

»Femolc: P, M or - are spontaneously formed to produce
ferroelectricity, feromagnetism or

»Multiferroic: coexistence of at least fwo kinds of long-range
ordering
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MAGNETOELECTRICS MULTIFERROICS:
WHY ARE THEY INTERESTING?

Polarization vs
H electric field in
FEs

» Magnetoelectrics: Control of P
(M} via a magnetic (electric) field
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CLASSIFICATION OF MULTIFERROICS

BULK COMPOSITE

Both magnetic and Nanostructures,
cipolar order heterointerfaces of ftwo
In the same different materials (one
bulk matenal FM and the other FE)
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CLASSIFICATION OF MULTIFERROICS

BULK COMPOSITE

STRUCTURAL ELECTRONIC

MAGNETIC MAGNETIC

FERROELECTRIC FERROELECTRIC
The primary Drder The primary - -
parameter ﬁf .g 5- @ order ;
related to tﬂ'ﬂ ﬁ,ﬁ @‘ ' | | parameter jpuieE
structural i 355'%5 ? & related to
instability - ) electronic
[either polar or non- polr::rj degrees of mreeaom
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MAGNETOELECTRICS MULTIFERROICS:
WHY ARE THEY INTERESTING?

Polarization vs
H electric field in
FEs

» Magnetoelectrics: Control of P
(M} via a magnetic (electric) field
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CLASSIFICATION OF MULTIFERROICS

COMPOSITE

STRUCTURAL ELECTRONIC
MAGNETIC MAGNETIC
FERROELECTRIC FERROELECTRIC

LONE- GEOMETRIC W
PAIR PR

DRIVEN -@P % size-effects,no PSOP |
covalency. ¢@ significant 4 Al

hybndlzaimn l > rehybridization)




CRITERIA FOR MAGNETISM AND FERROELECTRICITY

*Uncompensated spins form magnetic moments
« Exchange interaction from virtual hopping of electrons between ions
=y To have FM or FiM or AFM, one needs partially filled d-shells!

« Ferroelectricity requires “d?-ness ”
«Feromagnetism (or FiM- or AFM) =
requires partially filed d-electrons

CHEMICAL
INCOMPATIBILITY!

B.T. Matthias, New ferroelectric crystals, Phys. Rev. [1949)
N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000)

< Put FE-active ion on A-site

FEAT QUL Put magnetic ion on [ -site
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LONE-PAIR DRIVEN MF: THE “HOLY GRAIL, BiFeO;

* A room-temperature multiferrcic: FE and AFM (or weak FM])

» Ferroelectricity from the “stereochemically active
lone pair"on Bi** (cf ammonia, NHa)

* Magnetism from a 3d transition metal (Fe¥*, d)

«Good agreement between theory and expts

)

O o s @
El:'l:":|'::|'§:h

for P (=100 uC/cm2 along [111], ~40 pC/cm? along [001])

Polarization {ulfc

2

-BD -40 =1 0 200 40 &D
Electric Field (MVY/mj)

J. Wang et al., Science 299, 1719 (2003).
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THE “HOLY GRAIL": BiFeO;

Beyond LDA methods: Centrosymmetric reference structure metallic in LSDA
Modern theory of polarization: Non-zero P in centrosymmetric structure

Calculate P = 95 uC/cm? along [111]

T

=L

ar e
= al
- =1

Kl i Wl
Kic) R dlisnnson

Absence of strain dependence:

MNicola A.
Spaldin's
contri-
butions
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BiFeO3: MAGNETISM

»Bulk: G-type AFM and cycloidal modulation (A~440 nm)
= Thin films: the modulation disappears but a weak FM arises

Fe AFM moments are canted by up te ~12due to
sz,ft:llmhlr‘uskn Maornya interaction

.F'.||_'._' = i.} I 1|Ir| ] % '.Jr|| -_|_.I = .F ||r

_:-
1

A MFe AP

C. Ederer and
N.A.Spaldin, PRB
71, 060401 (2005)
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BiFeO3: MAGNETISM

Is the canting
coupled to
polanzation ¢

Can | switch the weak
moment by E-field?

No! Two different modes in BFO:

1. Polar displacements along [111]
2. Octahedral counter-rotations

.... and DM is related to Oxygen

octahedral rotations 9
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COMBINE FE AND FM: WAY OUT (i)

h‘, Put FE-active ion on A-site

Put magnetic ion on B-site
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WAY OUT (ll): EuTIO3

1. Feimiise i K M. Baibe, Pivciccen Beview Leners O (20046) 267602

Eu2*Ti*+*0,

e In bulk: paraelectric (PE) and
antiferromagnetic (AFM)

» Epitaxially strained thin film:
ferroelectric (FE) and ferromagnetic (FM)

Fennie's Epitaxially strained film
Rabe' . Rich magnetoelectric phase diagram
a 5 due to spin-lattice coupling predicted |
contri- from first principles
butions Colossal
s permittivity A
% = B
“# Cobosaal OEs;
ﬁ ME-u'::'I:-'Il HI;::IE- ;Eh:-::ﬁ
e
FM % AFM AFM AFM ? EM
+ § + 8 r 5 .
T o == FE =t :;

-. -. FE .:; ; 3 E % FE
Compressive Tensile T STy T
|‘4'|||..||'||'{'-.r|'§.' C |.||--\.|."\-1' I--"'Il.l":-:'."!.[lll': aa |.||'--\.'|."":-1.' =1. : ) : : : .+ . 411,

Biaxial epitaxial strain (%), n
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IMPROPER

FERROELECTRICITY
IN MAGNETS

What do we mean by “improper ferroelectricity” 2
Concepfts:

how to break inversion symmetry via coupled structural
distortions, spin- or charge-ordering

Examples: manganites (hexagonal vs orthorhombic)




IMPROPER STRUCTURAL FERROELECTRICITY: HEXAGONAL MANGANITES

RM"D E - \r( SC HI:I LLI vanaken, Palstra, Rilipetts, Spaldsn, Nature Materals 2004,
3_1 - 1 ] oy

¢ ¢ ¢ ¢ 6 ' thk
¢« @ ¢« ®

L] ® ® & . ~ Rotation
|

[ ] ]

. w Bucklin
“ @ N
L =) w

‘ ' g -- |‘ i :\.|pi||-.

e @ ’
¢ © 6 ¢ 6 il

Paraelectric (2=2) Ferroelectric (Z=6)
T > ~1250K YM I"’IO3 T: OK — ~1250K
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IMPROPER STRUCTURAL FERROELECTRICITY: HEXAGONAL MANGANITES

! O 6! ©!
© ‘g6 ®
i@ 1@ i
9 9.9

YMnO,
A X 2H-BaMnO,

.1 ©1 O el

MnQS (trigonal bi-pyramids)
are rotated
and timerize in the FE state
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IMPROPER STRUCTURAL FERROELECTRICITY: HEXAGONAL MANGANITES

=> WHY IS IT FERROELECTRIC 2177177

_ =01

2 02 Upy=-12798V /
503 Big\= 0813 eY .
% 04 \ ’

|

i .'l- - c 4 L -l-'.

o L = o
0.5 E {IEEI th + [ﬂ'm QI :q

] {l'al:E-:l-'lal unll:f.!lt'!' !

A
]

1.5 ! 05

Zone-boundary (trimerization)
mode is unstable
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RATIONALIZATION WITH LANDAU THEORY

Primary order parameter = y | | Ser:.nnr:lar_y order parameter |

where 7 is "some other Spontaneous polarization P
mode”, e.g. zone-boundary

lattice instability, magnetic
chiral vector, etc.

P 32 2 s Dann 4
F(M, P) = opP? + a m*+y Pn" + P
n = faintness index

dFIoP = 20,,P +y "+ 4 fP3=0

Once primary OP
becomes nonzero, a
polarization is induced
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IMPROPER FERROELECTRICITY : RECAP

= 7. P2 2
F, P) = apP?+ a n*+

+y,Pn" + BP4

n = faintness indax

Polarization

P not intrinsically unstable but slave of another unstable degree of
freedom (structural or other) 4.

P coupling at linear order with ¢ = shift of the well.

Other exponent n (« faintness ») possible (n = 1 : pseudo-proper)
Mo anomalous Born Effective Charges

Ferroelectric ? Yes, but switching P requires switching ¢ ...

MNo divergence of the dielectric constant
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IMPROPER FERROELECTRICITY IN HEXAGONAL MANGANITES

Expand energy to fourth order in the primary K and
secondary P order parameters:

Fanneg and Rabs, Physcsl

(node erengy akparion sempiifed for pecagogy Rerview B 72, 100000 205 I

FKs, P) = apP? + o, K32 + v, PK;® + BP4
> P~y K,

Extraction of model parameters from ab-initio (K,: frimerization mode, I';: polar mode).

P i R A e vt KAdedamr 19 47 MSATA)
5. Artyuknin et al, Nar. Marer. 13, 42 (2014).
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BREAKING INVERSION SYMMETRY IN MAGNETS

FERROELECTRICITY 4= no Inversion Symmetry

*“Proper” *“Improper” d

* lonic displac. break || + Electron degrees of
inversion symmetry (IS]| freedom break IS

« “Covalency’-driven || * “Correlation”-driven

Spin-order d l, k Orbital-order

Mrit

[some AFM /
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Main advantages over proper multiferroics:

» displacements/switching involve electrons rather than ions
—
= better as for "fatigue”

» especially for spin-induced ferroelectricity
e
[as magnetism and ferroelectricity share the
same microscopic origin)

Spin-order d l, k Orbital-order

some AFM
{ Em.m r.‘:hurgu—mﬂer / w
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HOW MAGNETIC ORDERING CAN BREAK INV. SYM.?

Elaciric polarization P,
(b 5

Tamparaturs {K)

T.Kimura et al., Nature 425, 55 (03); 5.W.Cheong and M.Mostovoy, Nafure Mater. &, 13
7
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HOW CHARGE ORDERING CAN BREAK INV. SYM.?

Neutral chain Inversion center: no P

“Pure” charge-ordering Structural dimerization

Site lelgle
centered centered
e & 4 W - e A | co

Inversion center: no P Inversion center: no P

Silvia Picozzi CNRS - Intl School on Oxide Electronics  ISOE 2019




HOW CHARGE ORDERING CAN BREAK INV. SYM.?

Neutral chain Inversion center: no P

“Pure” charge-ordering Structural dimerization

T = g T 3 "

Combination

Intermediate
Bond- and site-
centered
CO

+ - * - + -
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t . 4 4
1) ~".‘ '-'"v—.‘ ""'" ... but these are

just
Through center of symmetry: In practice we have to find
cancellation ==>>F =0 materials where these

. .
b g

Absence of Inversion center:
P finite!

Combination

Infermediate
Bond- and site-
centered

cO
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E-TYPE
MANGANITES:
ELECTRONIC
AND IONIC
FERROELECTRICITY

+|n collaboration with:
K. Yamauchi [now at Osaka)

l. A. Sergienko, E. Dagotto
(Oak Ridge Natl. Lab, Univ. Tennessee, TN|) {
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FRUSTRATION IN MAGNETS

Frusirﬂ’redusp]ﬂ chains with the nearest-neighbour FM and nexi-
nearest-neighbour AFM interactions Jand J” .

The spin chain with isotropic (Heisenberg)
H=Z%,[J Sy +Spey +J7Sp - Spazl.

ForJ” f|J | > 1/4its classical ground state is a magnetic spiral.
J'=0

J'c:'l;
The chain of lsing spins o, = £ 1, with energy

H=Z.[J 0,00 + J 0,00
has the up-up—down—-down ground state forJ™ /|J | = 1/2.
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WHY THE AFM-E SHOULD BE FERROELECTRIC ?

e “Electronic” mechanisms

* g, Orbital Ordering * Oxygen inequivalenc




WHY THE AFM-E SHOULD BE FERROELECTRIC ?

= “Switching” mechanisms: change direction of some spins

*» e, Orbital Ordering




WHY THE AFM-E SHOULD BE FERROELECTRIC ?

» “Structural” contributions: Magnetostriction

In-plane Mn and O
displacements
pattern from
centrosymmetric
AFM-A to
non-centrosymmetric
AFM-E




ORTHO-HoMnO3 AS A MAGNETICALLY
DRIVEN FERROELECTRIC

» First ab-initio calculation
of P driven by AFM®

» P is ~few uC/cm? [highest
among magnetic
improper femroelectrics)

= FE switching path via

spin-rotations

» Dual nature of P in real
compounds:
ionic displacements and
electronic/magnetic
effects are both important

* 5. Picozzi, K. Yamauchi, B. Sanyal,
|. Sergienko, E. Dagotto, PRL 29,
227201 (2007)
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CLASSIFICATION OF
IMPROPER MULTIFERROICS

4 ‘ LiCu,0,, LICUVO,
“DM"-driven | \
[spin-orbit related) : : W,

(R=Ho,...Lu)

driven : RMN,Os
- : (R=Tb,Dy,Ho)

“Heisenberg”-driven — _ | UFe,0,
(mostly collinear) s : f

FE‘aDi

Charge-ordering
driven

Latg sCag sMnNO5

— RNIO; [R=PFr, ..., Lu)
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WHAT ABOUT THE SIZE OF P?

Improper
Multiferroics

“DM"-driven
(spin-orbit related)

Spin-ordering
driven

Heisenberg-driven
(rmostly collinear)

driven

Charge-ordenng

Sivia Picozzi

Heisenberg
exchange
(with a
large § and
exchange
coupling J)
as well as
charge
ordering
(of both
kinds,
w/wo
spin order)

look

efficient

CHRS - Intl School on Oxide Electronics
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OTHER MECHANISMS
OTHER MATERIALS

1. Can we drive magnetism with an electric field?
2. Can we use organic or metal-organic frameworks?




MAGNETOELECTRICITY: SIMPLE ARGUMENTS

EAN POLARIZATIC

RIVE MAGNETIS

—




A-ray mmaging of cycloidal magnetic domains in ferroelectric monodomain BiFe(O,

R. D. Johnson,»? P. Barone,? A. Bombardi® R. J. Bean® 5. Picozzi?
P. G. Radaelli,! Y. 5. Oh® SW. Cheong? and L. C. Chapon”

Hard X-ray Magnetic Scattering (DIAMOND, UK):
High space and momentum resolution

k, = 2=x (8, 8,0)
k, = 2x (8,-28,0)
k, = 2x (-25, §,0)
. l:;';'ilﬁf;efﬁn .
ajl Photograph of the crystal
b) Distribution of AFM domains
3

Q. (47)
Hg: Magnenc Bragg intensinres
of the six satellites

Imaging of 3 large
[up to 500 um)
magnetic domains
for k;.kz.k5




DETERMINATION OF MAGNETIC POLARITY A

X-ray Magnetic Scattering with circ. pol. Light
=» Determination of absolute rotation
direction of magnetization

Fig: Variafion of the scattered X-ray intensity vs
analyser angle for three magnetic reflections

: _"'_'“:'"- k. =fd 280 ,.-‘" “y k-2, 00

configurations
rotate
clockwise !l




MICROSCOPIC ORIGIN: DFT

r_l:_-'ijl S [_pl!’.'l.fr-mj_]

[Real) Cycloid

P FET | 0668 | 10517
A40 A = PE 0 0
Reduce FEL -[1.668 | -1056.17
unit cell

in DFT: TABLE 1. DFT results obtained for I7=5 '

Zaxdbxc energy difference is defined as AE = Ecow — Ecew. FET and

(240 atoms]) FE| are characterized by opposite collective displacements,

T, respectively upward and downward, of Bi sublattice with
respect to O layers perpendicular to ¢ axis.

The sign of FE polarization
stabilizes the magnetic
polarity of the cycloid.

For PE. CW and CCW
states are degenerate




MODEL HAMILTONIAN STUDY

i e
& own B oS
e e

1

) Zi"r‘JZ) —(e: x &) - (8 x §;)
. = =) & : "

COUPLING TERM:

L

Ak (mey Pl

E imeV/Fe)

)SHINSKII-MORIYA LIK

The energy favored
magnetic polarity depends
on modulation angle
= Importance of 2" nn

to reproduce expts ; .
=y~24x 104V il e

modulation angle




MAGNETOELECTRICITY: SIMPLE ARGUMENTS

MAGNETIC CYCLOIDS
in each domain
propagate with a
UNIQUE ROTATION
direction imposed by
the ELECTRIC POLARITY
of the crystal

EAN POLARIZAT!

RIVE MAGNETIS

R.D. Jehnson et al,

B PRL 110, 217206 (2013}




... NOT ONLY OXIDES:
ORGANICS & HYBRIDS
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PROTON TRANFER: EFFICIENT SOURCE OF P

Vel 463 11 February 2000 dai:00, 1036/ nature0BT nene:

LETTERS

Above-room-temperature ferroelectricity in a
single-component molecular crystal

Sachin Horiuchi’, Yusuke Tokunaga®, Gianluca Giovannetti*?, Silvia Pioozzi”, Hirotake Hoh®, Ryo Shimano®”,
Reiji Kumai' & Yeshinori Tokura'=*

*G




TTF-CA: SPIN-PEIERLS AS A SOURCEOFP ?

EANDS
FEBE HSE

i
s 4
LY

BA [acoeptar) |
TTF {dorar)

»SPIN PEIERLS: One-dimensional Heisenberg
spin 1/2 chain ==>> instability to a dimer-
singlet (gain of symmetric exchange)

= TTF-CA: Under the neutral-lonic transition

0 0.95 05 075

¢

0AFE 15075 -
)

G. Giovannetti et al., PRL 103 26401 (2009)




METAL-ORGANIC FRAMEWORKS

w

Crystaline hybrid materials like

are very attractive materials for gas
storage, drug delivery, catalysis,
optics, and magnetism

Hybrid perovskite analog

Hybrid Improper Ferroelectricity in a Multiferroic

and Magnetoelectric Metal-Organic Framework
Adwv. Mater. 2013, 25, 22842290

A. Stroppa,* P. Barone, P. Jain, . M. Perez-Mato, and 5. Picozzi




METAL-ORGANIC FRAMEWORKS

Cu octahedra connected
by HCOO- groups
(ligands)

Cu*? Jahn-Teller ion

Antiferrodistortive

order in the ab plane
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Cu-MOF AS A NEW MULTIFERROIC

EE 0.1 A amplitude of the polar distortion:
8 wal 1 A=0 paraelectric state (P=0);
ot . A=+/- 1 ferroelectric (FE) state

P, = +037

(P=0.37 uC/cm?2).

(WC/em ™ )

Lot

NB: The AFD order is non-polarin
usual inorganic compound (like KCuF3)

'I_'F

In Cu-MOF AFD and FE
are clearly comrelated!

ol rad b

I‘||:|lll_.'l.'|} Poani 52 Piia 211.'1.1-_1
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Cu-MOF AS A NEW MULTIFERROIC

symmeiry analysis: Coupling of the type M P.L.
=> Weak-FM component Is allowed in Cu-MOF and coupled to FE order!

Ab-initio calculations fully confirm
what expected by symmetry

In Cu-MOF, a magnetic
field can couple fo

weak-FM component
and can reverse
FE polarization (and
viceversa: an elecitric

Field can switch
weak-moment)

) ; ELECTRICAL CONTROL
P (uClem’) OF MAGNETIZATION !
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TAKE HOME MESSAGES

First principles calculations can give valuable insights into mechanisms
and quantitative reliable estimates for different materials

Very different microscopic origins for improper ferroelectricity

Heisenberg exchange siriction seems a mechanism able to
drive a large polarization !

Charge ordering is an efficient mechanism!

MAGNETOELECTRICITY: can polanzation
drive magnetism?
The case of BiFeO; spin cycloid

Take a look at organics/hybrids!




FUTURISTIC OUTLOOK: MACHINE LEARNING ?

Can we use DFT data to train a
Machine Learning Algorythm
to predict when a maternal is FE
or AFE.to go to high
fime/space scales, to design
room temperature MF 2

KEE
CALM

ANMD

WE'LL SEE




